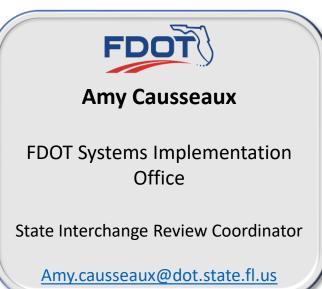
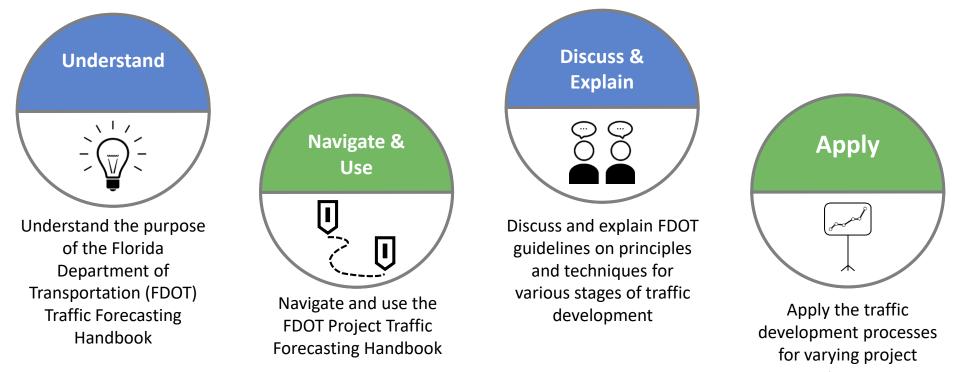

2019 Project Traffic Forecasting Handbook Training


Webinar

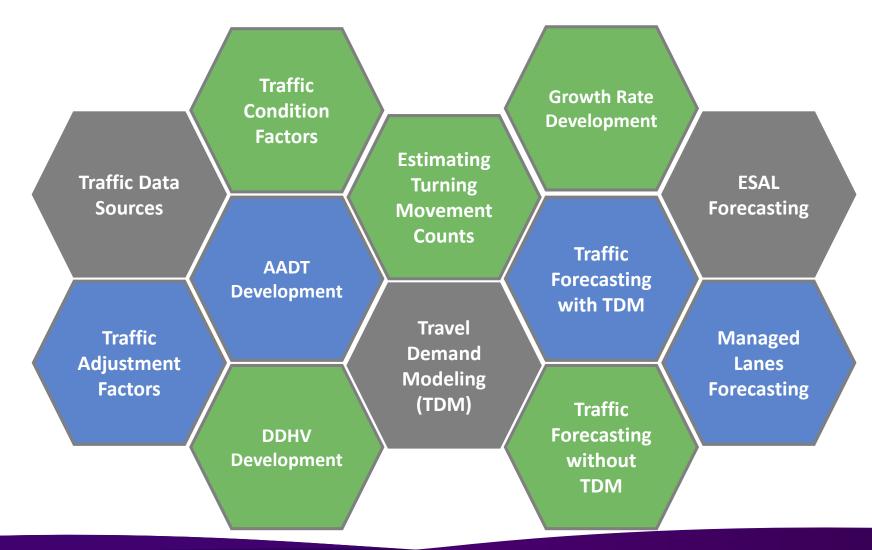
Project Traffic FORECASTING HANDBOOK 2019

Welcome



Training Objectives

• At the conclusion of this training, you will be able to...



types

General Concepts being Covered

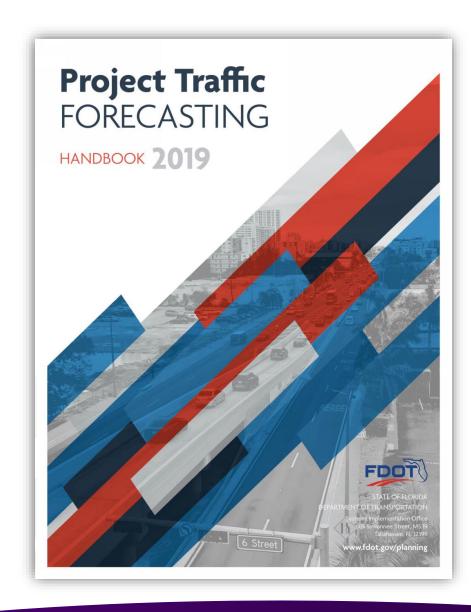
FDOT

- This webinar will cover Project Traffic Forecasting Handbook Overview & Application
 - □ Introduction
 - Traffic Data Sources and Factors
 - □ Forecasting with Travel Demand Model
 - □ Forecasting without Travel Demand Model
 - Directional Design Hour Volumes

- Estimating Intersection Turning Movements
- □ ESAL Forecasting
- Tolled Managed Lanes Forecasting
- □ Practice Problems/Project Examples

Introduction

- Background
- Purpose of the Handbook
- Who Uses the Handbook?
- Purpose of Project Traffic Forecasting
- Traffic Forecasting
 Process
- Quiz


Project Traffic FORECASTING HANDBOOK 2019

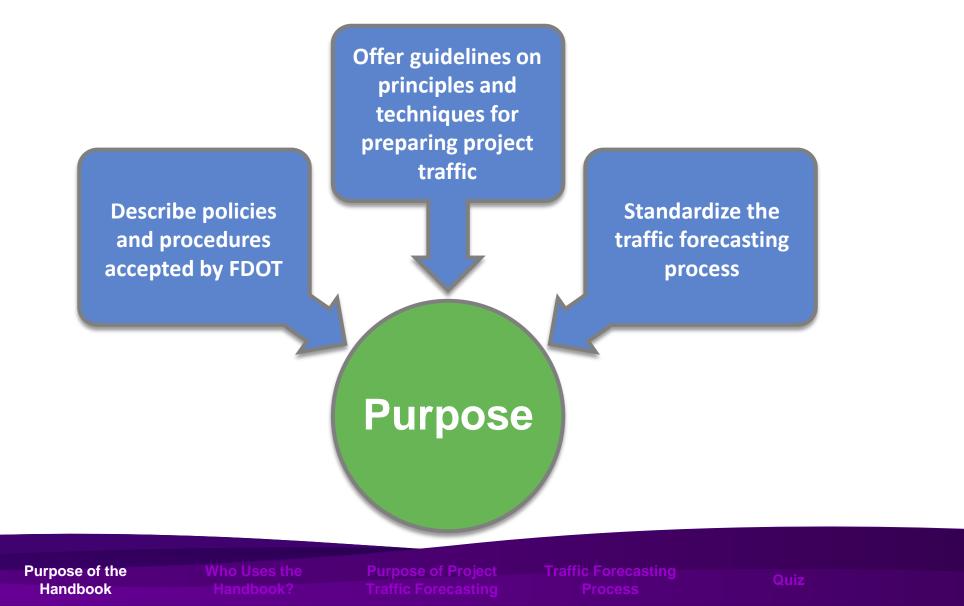
Background

- It is the policy of the Florida Department of Transportation (FDOT)
 - To provide instructions for using design traffic criteria to forecast
 - Corridor Traffic
 - Project Traffic
 - 18-KIP Equivalent Single Axle Load (ESAL)
- This Handbook supplements the Project Traffic Forecasting Procedure <u>Topic No.525-</u> <u>030-120</u>

FDOT • <u>2019 Project Traffic Forecasting Handbook</u>

Background

Purpose of the Handbook


Who Use Handbo

Purpose of Pr Traffic Foreca raffic Forecastin Process

Qui

Purpose of the Handbook

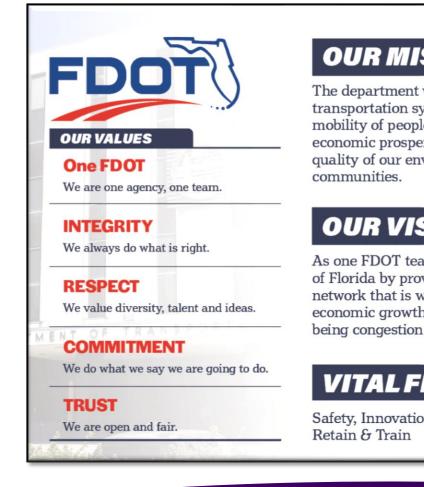
FDOT

-7

Who Uses the Handbook?

- FDOT
- Local Governments
- MPOs, TPOs, TPAs
- Consultant engineers and planners

This Handbook is used to develop, review, accept or approve project traffic developed for infrastructure projects



Purpose of the Handbook Who Uses the Handbook? Purpose of Traffic Fore raffic Forecastii Process

Quiz

Purpose of Project Traffic Forecasting

- Support the FDOT Mission and Vision
- Maintain Existing Facilities
- Plan for Future Transportation Needs

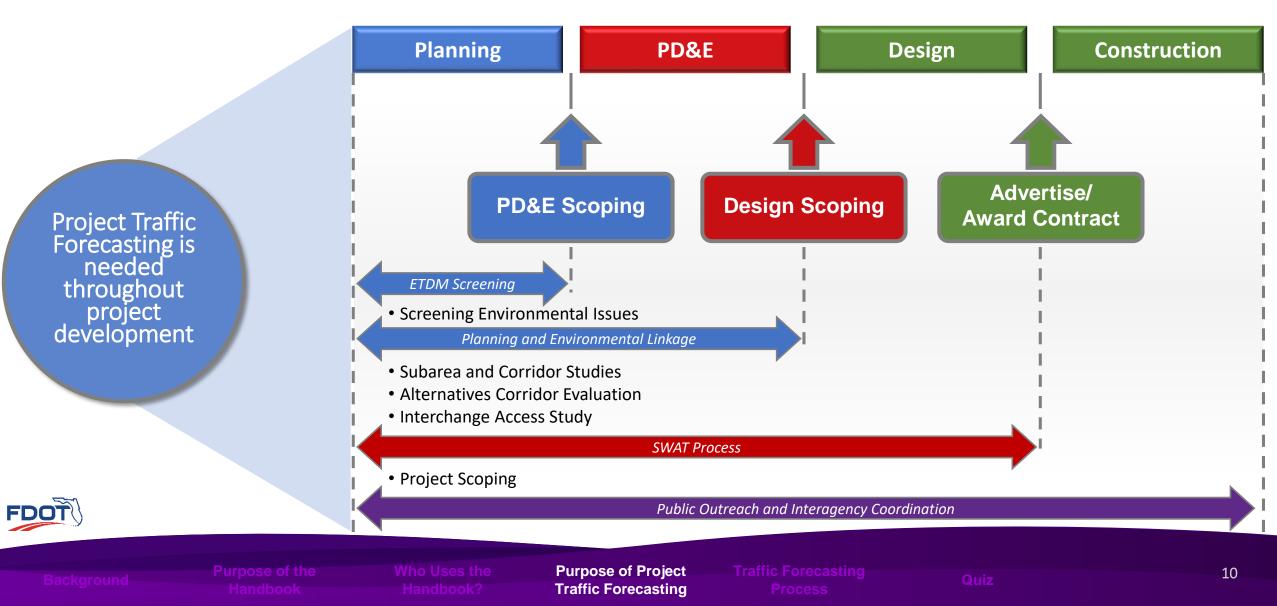
OUR MISSION

The department will provide a safe transportation system that ensures the mobility of people and goods, enhances economic prosperity, and preserves the quality of our environment and

OUR VISION

As one FDOT team, we serve the people of Florida by providing a transportation network that is well planned, supports economic growth, and has the goal of being congestion and fatality free.

VITALFEW


Safety, Innovation, Mobility, Attract,

Central Office - Tallahassee

Purpose of Project Traffic Forecasting

Purpose of Project Traffic Forecasting

Traffic Forecasting Process

Data Collection and Processing

Existing Conditions Analysis Future Travel Demand Forecasting Future Project Traffic Development

Review and Approval

Purpose Handb

ne V

he Purp ? Traff Traffic Forecasting Process

Quiz

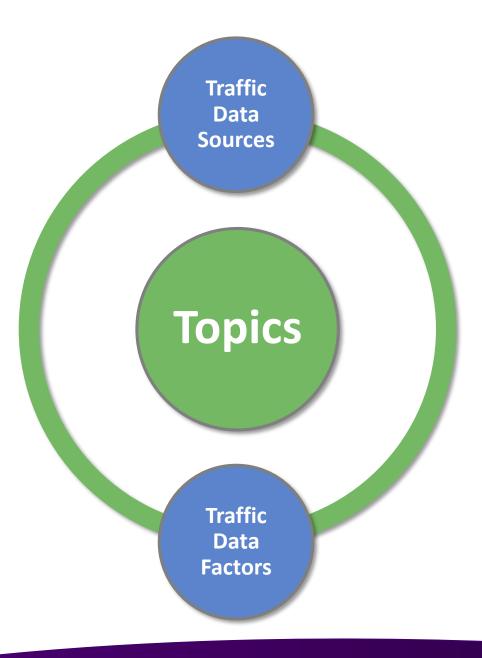
Introduction

QUIZ

Project Traffic FORECASTING HANDBOOK 2019

Traffic Data Sources and Factors

Project Traffic FORECASTING


ATE O

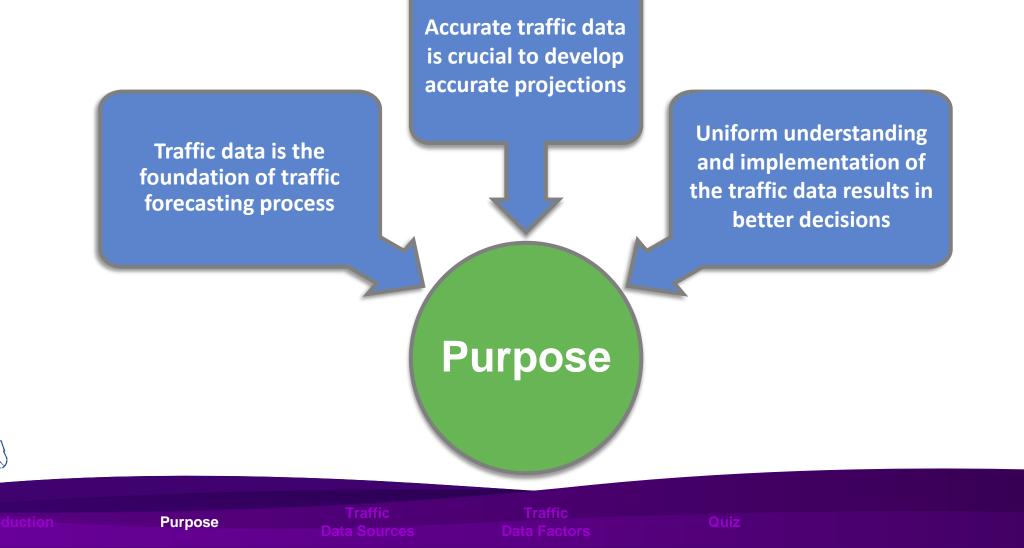
HANDBOOK 2019

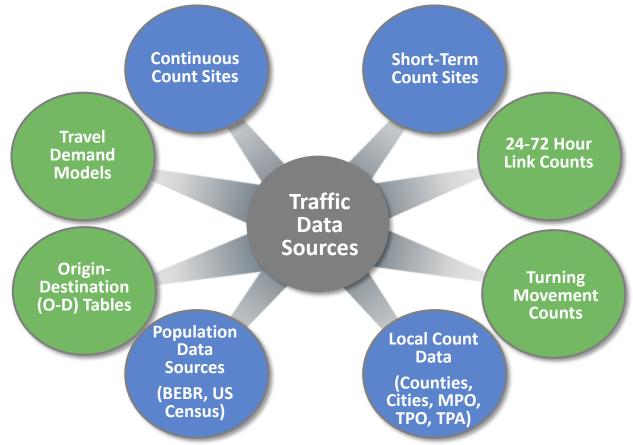
- Introduction
- Purpose
- Traffic Data Sources
- Traffic Data Factors
- Quiz

Introduction

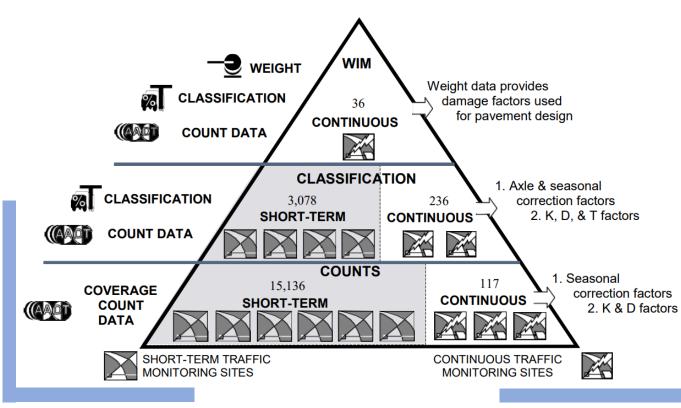
• FDOT collects and stores a broad range of traffic data

Introduction


Purp


Data

Qı


Purpose of Data Sources and Factors

FDOT

Source: 2019 FDOT Project Traffic Forecasting Handbook; Page 6; Figure 2-1

- Count Sites
 - 2 types of FDOT Traffic Monitoring Sites
 - Continuous Count Sites
 - Short-Term Count Sites
- FDOT Traffic Monitoring Site Count Information Available on <u>Florida</u> <u>Traffic Online (FTO)</u>

- FDOT Traffic Monitoring Sites
 - Continuous Count Sites
 - Permanently Installed
 - Records the distribution and variation of traffic flow for every hour of the year
 - Produces AADT, K and D factors
 - Performs classification counts

Site 729905: I-95 S of Old St. Augustine Road, Duval County

ntroduction

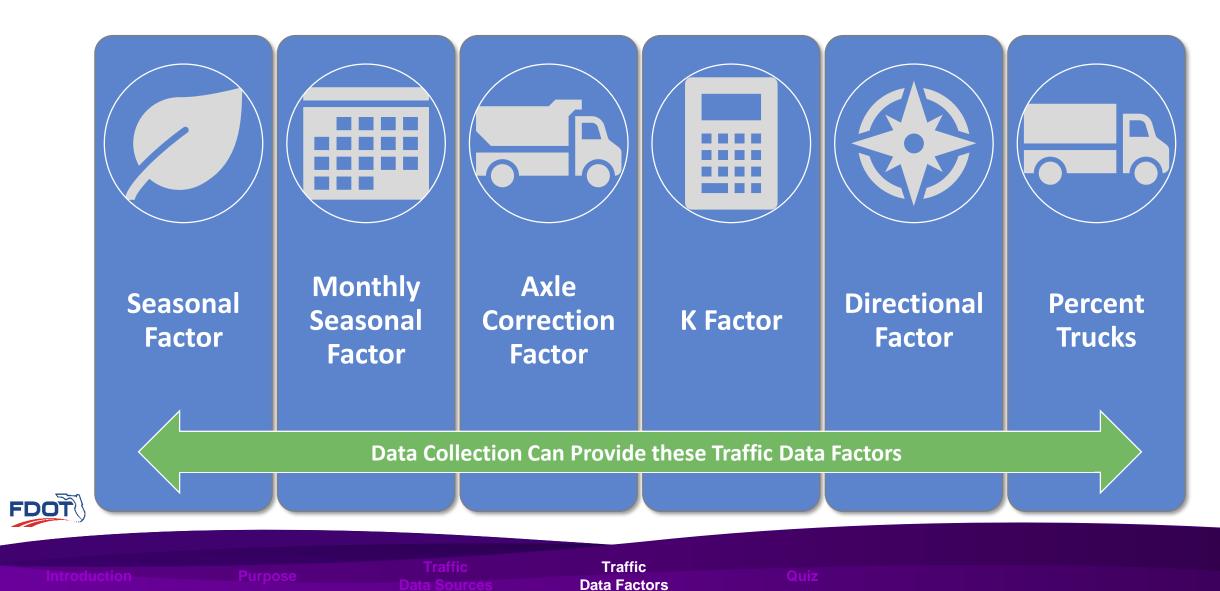
se

Data Sources

Traffic

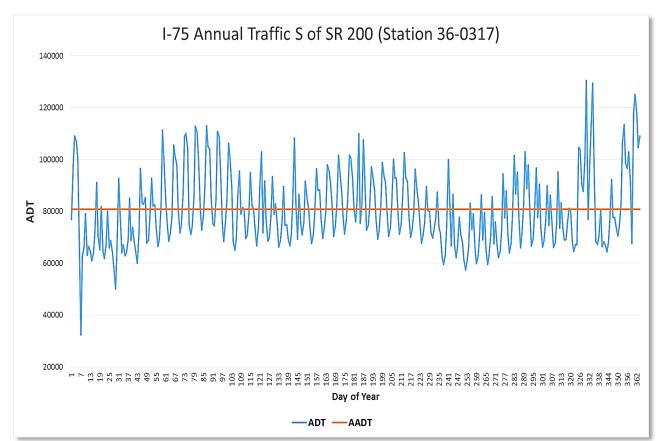
Qu

- FDOT Traffic Monitoring Sites
 - Short-Term Count Sites
 - Temporarily Placed
 - Records the distribution and variation of traffic flow
 - Seasonal Classification Counts develop
 - Axle Correction Factors (ACF)
 - Truck Percentages

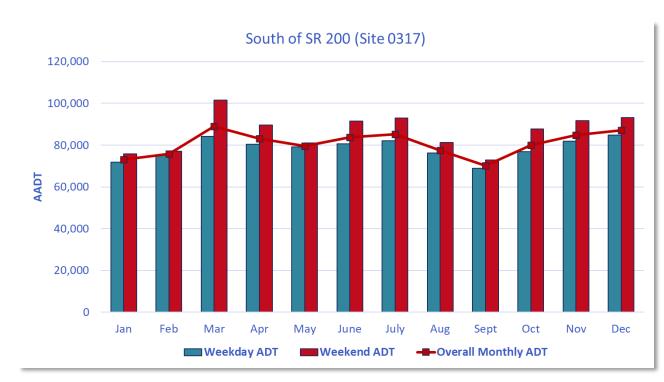


Data Sources

Traffic


Qu

- Annual Average Daily Traffic (AADT)
 - AADT is the estimate of typical daily traffic on a road segment for all seven days of the week over the period of one year
 - AADT is the best measure of the total use of the road
 - Average Daily Traffic (ADT) is obtained by short-term traffic counts
 - Typically, a 72-hour traffic count


Traffic

Data Factors

- Annual Average Daily Traffic (AADT)
 - Monthly Average Daily Traffic (MADT)
 - Average traffic of one month
 - Peak Season Weekday Average Daily Traffic (PSWADT)
 - Average weekday traffic during the peak season
 - Typical volume produced in Travel Demand Models

_____Purp

Da

Traffic Data Factors

Quiz

- Annual Average Daily Traffic (AADT)
 - AADT calculation equations
 - For Continuous Traffic Counts

 $AADT = rac{Total Number of Vehicles in One Year}{Total Number of Days in One Year}$

• For Short-Term Traffic Counts

 $AADT = ADT \times SF \times ACF$

SF – Weekly Seasonal Factor
 ACF – Axle Correction Factor
 ACF only applied to short-term counts obtained from portable axle counters

uction

Traffic Data Factors

Quiz

- Seasonal Factor
 - Adjusts for variations in traffic throughout the year
 - Determined using traffic data from continuous count locations
 - Two types of seasonal factors
 - Monthly Seasonal Factor (MSF)
 - Weekly Seasonal Factor (SF)
 - SFs are in Peak Season Factor Reports
 - Available on FTO Website

Purpos

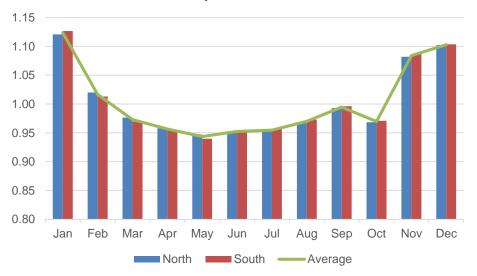
Da

Data Factors

Traffic

Quiz

- Monthly Seasonal Factor
 - MSF for each direction is calculated separately


$$MSF_{Direction} = \frac{AADT}{MADT}$$

• MSF for the station is the average of the two directional monthly factors

$$MSF_{Station} = \frac{MSF_{D1} + MSF_{D2}}{2}$$

Traffic

Data Factors

Monthly Seasonal Factor

• Monthly Seasonal Factor Example – I-75 Northbound in January

- $MSF_{NB} = \frac{AADT}{MADT}$
- *AADT* = 26,419
- MADT = 23,243

•
$$MSF_{NB} = \frac{26,419}{23,243} = 1.14$$

2018 DIRECTIONAL VOLUME REPORT - REPORT TYPE: ALL

DISTRICT: 2 COUNTY: 29 - COLUMBIA SITE: 0320

DIRECTION: NORTH

JAN	SUN 22819	MON 25250	TUE 23233	WED 19915	THR 22066	FRI 26543	SAT 22877	MADT 23243	AWDT 23401	AWET 22848
FEB	24957	23972	20640	21485	22346	27382	23220	23429	23165	24089
MAR	34501	26592	23331	25599	29258	36793	35702	30254	28315	35102
APR	32118	26369	23612	24775	28057	34704	33450	29012	27503	32784
MAY	26059	25205	23548	24187	28053	33083	26986	26732	26815	26523
JUN	31416	25769	23136	25085	29068	35268	34458	29171	27665	32937
JUL	33880	26567	23958	23102	28636	35012	35032	29455	27455	34456
AUG	24636	21234	19900	21997	24825	30396	25285	24039	23670	24961
SEP	22931	23298	19640	19844	22303	27831	22060	22558	22583	22496
OCT	26769	22286	19640	20660	26484	33133	24462	24776	24441	25616
NOV	33204	26428	24546	26445	23448	31450	31644	28166	26463	32424
DEC	27142	21514	20154	27572	27368	30457	29102	26187	25413	28122
ANNUAL AVG	28369	24540	22112	23389	25993	31838	28690	AADT 26419	AAWD 25574	AAWE 28530

Traffic **Data Factors**

• Monthly Seasonal Factor Example – I-75 Southbound in January

JAN

FEB MAR APR MAY JUN JUL AUG SEP OCT

NOV

DEC

ANNUAL

AVG

• $MSF_{SB} = \frac{AADT}{MADT}$ • AADT = 26,835• MADT = 24,040• $MSF_{SB} = \frac{26,835}{24,040} = 1.12$

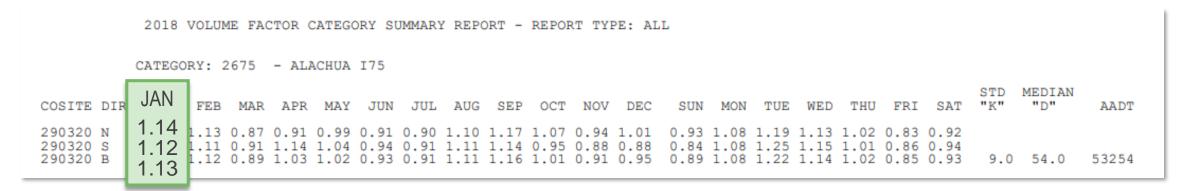
2018 DIF	RECTION	AL VOLUN	AE REPOR	RT - REI	PORT TYP	PE: ALL			
DISTRICI	2: 2	COUNTY:	: 29 - 0	COLUMBI	A SITE:	0320			
DIRECTION	: SOUTH	[
SUN	MON	TUE	WED	THR	FRI	SAT	MADT	AWDT	AWET
25524	23996	22754	20802	24484	28294	22426	24040	24066	23975
26073	21907	19441	21600	25877	30227	23974	24157	23810	25024
33083	24498	20837	23127	28622	37777	37541	29355	26972	35312
29277	22959	19464	20759	23906	27603	21500	23638	22938	25389
29813	24826	20473	21587	26083	31925	26449	25879	24979	28131
34131	25606	21896	23493	26885	33317	33715	28435	26239	33923
37214	27792	23710	23912	27897	32964	32717	29458	27255	34966
28624	21780	19432	21318	24314	29328	24071	24124	23234	26348
27204	24341	20558	20030	22679	26538	23859	23601	22829	25532

AADT

AAWD

Purpos

Traffic


Data Factors

Qui

AAWE

• Monthly Seasonal Factor Example – I-75 Station in January

•
$$MSF_{Station} = \frac{MSF_{NB} + MSF_{SB}}{2}$$

• $MSF_{Station} = \frac{1.14 + 1.12}{2} = 1.13$

Traffic

Data Factors

Quiz

What is the station MSF in the month of July?

2018 DIRECTIONAL VOLUME REPORT - REPORT TYPE: ALL DISTRICT: 2 COUNTY: 32 - HAMILTON SITE: 0112

DIRECTION: NORTH

JAN FEB MAR APR JUN JUL JUL AUG SEP OCT NOV DEC	SUN 17374 20152 26957 28135 21672 27156 30674 20983 19206 23607 26264 22982	MON 20333 19256 21060 21681 20680 21330 22758 17442 20127 19604 20427 18072	TUE 18824 16834 19119 19503 19109 20372 16587 17237 16780 20296 16924	WED 16614 17386 20860 20870 19645 21080 20001 18011 17466 17554 22273 22453	THR 18227 18092 24226 23274 22507 24236 24664 20224 19048 21122 19522 23053	FRI 21156 21845 30838 29444 26317 30148 30089 24644 23259 26127 24412 27575	SAT 18317 19373 30947 30390 22949 31183 32630 21322 19536 21990 25881 24994	MADT 18692 18991 24858 24757 21840 24986 25884 19888 19411 20969 22725 22293	AWDT 19031 18683 23221 22954 21652 23313 23577 19382 19427 20237 21386 21615	AWET 17846 19763 28952 29263 22311 29170 31652 21153 19371 22799 26073 23988
ANNUAL AVG	23764	20231	18446	19518	21516	26321	24959	AADT 22108	AAWD 21206	AAWE 24362
1 8	1 RECOR 4 RECOR 9 RECOR 0 RECOR 0 RECOR	DS FLAG DS FLAG DS FLAG DS FLAG	GED BAD GED ATY GED NUL	PICAL L						
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC	SUN 20512 20811 27639 23844 23008 28422 31579 23717 22706 28783 32269 29103	MON 20027 17975 19711 19772 20600 21601 23212 18218 20443 21563 22808 19733	TUE 19002 16228 17152 16312 16843 18532 20045 16223 16507 19103 20490 17685	WED 17699 17741 19256 18213 17758 19405 20816 17783 16999 20124 23020 25015	THR 20037 20932 23237 20194 21297 22687 23725 19977 18986 23481 21053 28018	FRI 22541 24403 31663 22685 25492 28350 28501 24332 21697 26731 23978 29941	SAT 18759 20075 33580 18415 22220 31018 29961 20329 21098 23165 27293 30153	MADT 19797 19738 24605 19919 21031 24288 25406 20083 19777 23279 24416 25664	AWDT 19861 19456 22204 19435 2315 23260 19307 18926 22200 22270 24078	AWET 19636 20443 30610 21130 22614 29720 30770 22023 21902 25974 29781 29628
ANNUAL AVG	26033	20472	17844	19486	21969	25860	24672	AADT 22334	AAWD 21126	AAWE 25353
1	1 RECOR 3 RECOR 0 RECOR 0 RECOR 0 RECOR	DS FLAG DS FLAG DS FLAG	GED BAD GED ATY GED NUL	PICAL L						
offic										

16

on _____

Traffic Data Factors

• Explanation – I-75 Northbound in July

- $MSF_{NB} = \frac{AADT}{MADT}$
- *AADT* = 22,108
- *MADT* = 25,884

•
$$MSF_{NB} = \frac{22,108}{25,884} = 0.85$$

2018 DIRECTIONAL VOLUME REPORT - REPORT TYPE: ALL DISTRICT: 2 COUNTY: 32 - HAMILTON SITE: 0112 DIRECTION: NORTH

JAN FEB MAR APR MAY JUN JUL	SUN 17374 20152 26957 28135 21672 27156 30674	MON 20333 19256 21060 21681 20680 21330 22758	TUE 18824 16834 19119 19503 19109 19769 20372	WED 16614 17386 20860 20870 19645 21080 20001	THR 18227 18092 24226 23274 22507 24236 24664	FRI 21156 21845 30838 29444 26317 30148 30089 24644	SAT 18317 19373 30947 30390 22949 31183 32630 21322	MADT 18692 18991 24858 24757 21840 24858 24757 21840	AWDT 19031 18683 23221 22954 21652 23313 23577	AWET 17846 19763 28952 29263 22311 29170 31652
AUG SEP OCT	20983 19206 23607	17442 20127 19604	16587 17237 16780	18011 17466 17554	20224 19048 21122	24644 23259 26127	19536 21990	19411 20969	19382 19427 20237	21153 19371 22799
NOV DEC	26264	20427	20296	22273	19522 23053	24412 27575	25881 24994	22725	21386 21615	26073 23988
ANNUAL AVG	23764	20231	18446	19518	21516	26321	24959	AADT 22108	AAWD 21206	AAWE 24362

Traffic **Data Factors**

• Explanation – I-75 Southbound in July

- $MSF_{SB} = \frac{AADT}{MADT}$
- *AADT* = 22,334
- *MADT* = 25,406
- $MSF_{SB} = \frac{22,334}{25,406} = 0.88$

2018 DIRECTIONAL VOLUME REPORT - REPORT TYPE: ALL DISTRICT: 2 COUNTY: 32 - HAMILTON SITE: 0112

DIRECTION: SOUTH

JAN FEB MAR APR MAY JUN JUL	SUN 20512 20811 27639 23844 23008 28422 31579	MON 20027 17975 19711 19772 20600 21601 23212	TUE 19002 16228 17152 16312 16843 18532 20045	WED 17699 17741 19256 18213 17758 19405 20816	THR 20037 20932 23237 20194 21297 22687 23725	FRI 22541 24403 31663 22685 25492 28350 28501	SAT 18759 20075 33580 18415 22220 31018 29961	MADT 19797 19738 24605 19919 21031 24200 25406	AWDT 19861 19456 22204 19435 20398 22115 23260	AWET 19636 20443 30610 21130 22614 29720 30770
AUG	23717	18218	16223	17783	19977	24332	20329	19777	19307	22023
SEP	22706	20443	16507	16999	18986	21697	21098		18926	21902
OCT	28783	21563	19103	20124	23481	26731	23165	23279	22200	25974
NOV	32269	22808	20490	23020	21053	23978	27293	24416	22270	29781
DEC	29103	19733	17685	25015	28018	29941	30153	25664	24078	29628
ANNUAL AVG	26033	20472	17844	19486	21969	25860	24672	AADT 22334	AAWD 21126	AAWE 25353

____Purpos

Traffic Data Factors

Qui

• Explanation – I-75 in July

•
$$MSF_{Station} = \frac{MSF_{NB} + MSF_{SB}}{2}$$

• $MSF_{Station} = \frac{0.85 + 0.88}{2} = 0.87$

2018 VOLUME FACTOR CATEGORY SUMMARY REPORT - REPORT TYPE: ALL

CATEGORY: 2675 - ALACHUA 175

COSITE DIR JAN FEB MAR APR MAY JUN												SAT	"K"	MEDIAN "D"	AADT
320112 N1.181.160.890.891.010.88320112 S1.131.130.911.121.060.92320112 B1.161.150.901.011.040.90	0.85 0.88 0.87	11 1.14 11 1.13 11 1.14	1.05 0.96 1.01	0.97 0.91 0.94	0.99 0.87 0.93	0.93 0.86 0.90	1.09 1.09 1.09	1.20 1.25 1.23	1.13 1.15 1.14	1.03 1.02 1.03	0.84 0.86 0.85	0.89 0.91 0.90	9.	5 53.6	44442

Traffic

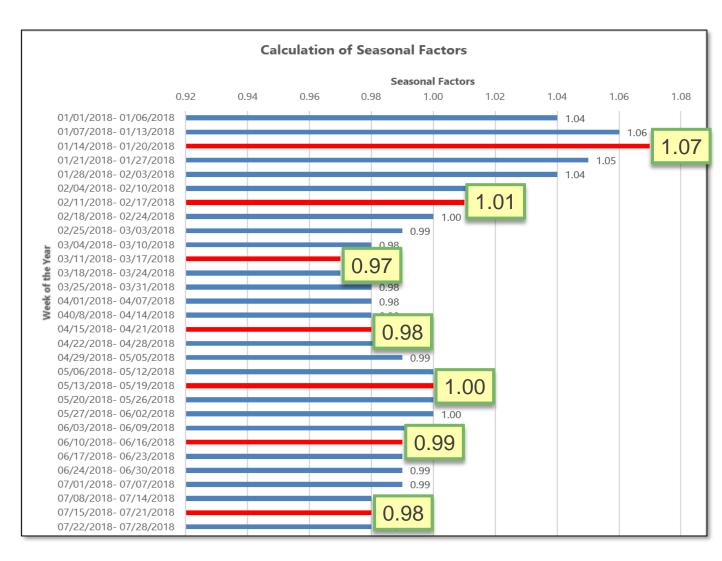
Data Factors

Quiz

- Weekly Seasonal Factor
 - The SFs are calculated for each week of the year
 - Each continuous count station is categorized, and the SFs for each count station in the category are averaged
 - For example, SFs at all continuous stations along I-75 in Alachua County are averaged
 - SFs are in Peak Season Factor Reports
 - Available on <u>FTO Website</u>

	EAK SEASON FACTOR CATEGORY Y: 2675 ALACHUA 175	REPORT	T - REPORT TYPE: ALL
WEEK	DATES	SF	MOCF: 0.95 PSCF
1 2	01/01/2018 - 01/06/2018 01/07/2018 - 01/13/2018	0.94 1.04	0.99 1.09
3	01/14/2018 - 01/20/2018 01/21/2018 - 01/27/2018	1.15 1.14	1.21
4 5	01/28/2018 - 02/03/2018	1.14	1.20
	02/04/2018 - 02/10/2018 02/11/2018 - 02/17/2018	1.14	1.20 1.20
8	02/18/2018 - 02/24/2018 02/25/2018 - 03/03/2018	1.14 1.08	1.14 1.07
	03/04/2018 - 03/10/2018	1.02	1.01 0.95
12	03/11/2018 - 03/17/2018 03/18/2018 - 03/24/2018	0.96 0.90	0.97
	03/25/2018 - 03/31/2018 04/01/2018 - 04/07/2018	0.92	1.00
	04/08/2018 - 04/14/2018 04/15/2018 - 04/21/2018	0.95 0.97	1.05
17	04/22/2018 - 04/28/2018 04/29/2018 - 05/05/2018	1.00	1.07
	01,23,2010 03,03,2010	1.02 1.02	1.00

1.03


Purp

_____D:

Traffic Data Factors

Qu

- Weekly Seasonal Factor
 - The MSFs are assigned to the week of the midpoint of the month
 - Weeks without factors are estimated by interpolating from the mid-week of one month to the mid-week of the next month

FDOT

(

Traffic

Data Factors

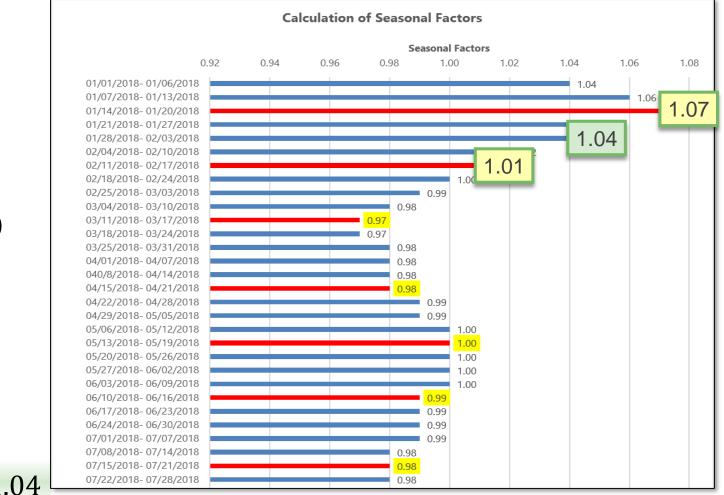
• Weekly Seasonal Factor Equation

$$SF = MSF_i + \frac{MSF_{i+1} - MSF_i}{N} \times n$$

- $MSF_i = MSF$ for a particular month *i*. The MSFs are assigned to the week of the year that contains the midpoint of the month
- $MSF_{i+1} = MSF$ for the following month i+1
- N = Number of weeks between the midpoint of month *i* and the midpoint of the following month *i*+1, usually 4
- *n* = Number of weeks between the midpoint of the month *i* and the week for SF, usually between 1 and 4

Traffic

Data Factors



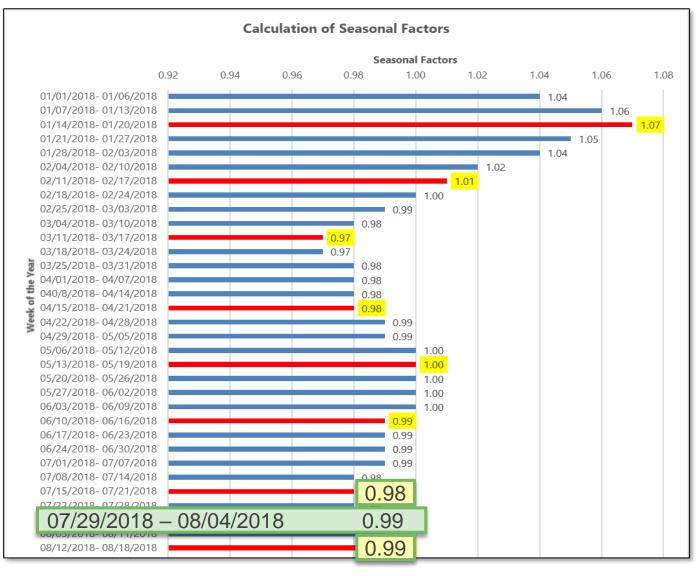
 Weekly Seasonal Factor Example – 1/28/2018-2/03/2018

•
$$SF = MSF_i + (\frac{MSF_{i+1} - MSF_i}{N} \times n)$$

- $MSF_i = 1.07$
- $MSF_{i+1} = 1.01$
- *N* = 4
- *n* = 2

•
$$SF = 1.07 + (\frac{1.01 - 1.07}{4} \times 2) = 1.04$$

Data Factors


Traffic

Qui

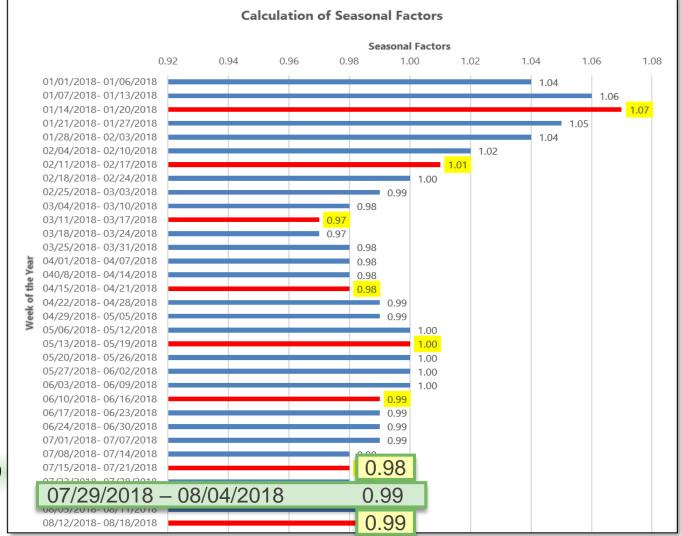
Practice Problem 2

What is the station SF for the week of 7/29/2018-8/4/2018?

FDOT

on

se


Traffic Data Factors

Qui

Practice Problem 2

- Explanation 7/29/2018-8/4/2018
 - $SF = MSF_i + (\frac{MSF_{i+1} MSF_i}{N} \times n)$
 - $MSF_i = 0.98$
 - $MSF_{i+1} = 0.99$
 - N = 4
 - *n* = 2

•
$$SF = 0.98 + (\frac{0.99 - 0.98}{4} \times 2) = 0.99$$

Traffic Data Factors

G

- Axle Correction Factor (ACF)
 - Developed to adjust axle counts into vehicle counts
 - Determined using
 - Continuous Classification Counts
 - Short-Term Classification Counts

$ACF = \frac{Total \ Number \ of \ Vehicles}{Total \ Number \ of \ Axles \ on \ the \ Vehicles}$

Traffic

Data Factors

- Axle Correction Factor (ACF)
 - Developed for each
 - Roadway Section
 - Week of the Year
 - Always less ≤ 1.00
 - ACFs are in a Weekly Axle Factor Category Report
 - Available on FTO Website

2018 WEEKLY AXLE FACTOR CA	TEGORY REPORT - REPORT TYPE: COUNTY
COUNTY: 26 - ALACHUA	2675
WEEK DATES 1 01/01/2018 - 01/06/2018 2 01/07/2018 - 01/13/2018 3 01/14/2018 - 01/20/2018 4 01/21/2018 - 01/27/2018 5 01/28/2018 - 02/03/2018 6 02/04/2018 - 02/10/2018 7 02/11/2018 - 02/17/2018 8 02/18/2018 - 02/24/2018 9 02/25/2018 - 03/03/2018 10 03/04/2018 - 03/10/2018 11 03/11/2018 - 03/10/2018 12 03/18/2018 - 03/24/2018 13 03/25/2018 - 03/31/2018 14 04/01/2018 - 04/07/2018 15 04/08/2018 - 04/21/2018 16 04/15/2018 - 04/21/2018 17 04/22/2018 - 04/28/2018	0.76 0.74 0.71 0.71 0.71 0.71 0.71 0.72 0.73 0.74 0.75 0.74 0.74 0.73 0.73
	0.72 0.73

_____Purp

_____D

Traffic Data Factors

Qui

• Round the volumes to reflect the

uncertainty of estimates and

Rounding Convention

Forecast Volume	Round to Nearest
<100	10
100 to 999	50
1,000 to 9,999	100
10,000 to 99,999	500
>99,999	1,000

The rounding convention was adapted from *AASHTO Guidelines for Traffic Data Programs* published in 2009. The convention was revised to be more stringent to address situations where growth is low and future volumes after rounding appear to be the same.

forecasts

• Precision of Data

Da

Traffic Data Factors

- Annual Average Daily Traffic (AADT)
 - AADT Calculation Example Continuous Count Site
 - Calculate average volumes for each day-ofweek for each month
 - 2 Calculate average volumes for each day-ofweek for the whole year
 - 30
 - Calculate directional AADT by averaging seven daily volumes for the year
 - Sum the directional AADT volumes to generate the AADT volume for the traffic monitoring site.

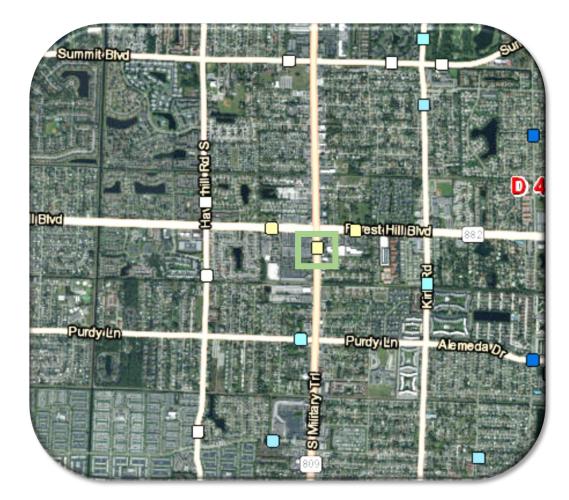
	2018 DIR	ECTIONA	L VOLUM	E REPOR	T - REP	ORT TYP	E: ALL	
	DISTRICT	: 3	COUNTY:	48 - E	SCAMBIA	SITE:	0368	
D	IRECTION	NORTH	(4)					
	SUN	MON	TUE	WED	THR	FRI	SAT	MADT
JAN	20805	29744	35186	35716	35495	37980	26156	31583
FEB	22961	35340	37821	38204	38587	40713	29304	34704
MAR	26853	36975	38025	39019	39066	41111	32723	36253
APR	26773	38016	39482	39778	40382	42470	31823	36961
MAY	28297	38247	38939	39454	40724	42452	33475	37370
JUN	28239	38093	38954	39497	40187	41969	33084	37146
JUL	28328	38637	39846	36652	40678	42203	33725	37153
AUG	27103	37869	38950	38924	39626	41415	32284	36596
SEP	26010	34516	38538	38896	39180	41332	31032	35643
OCT	26219	37523	38882	39486	40025	41810	31931	36554
NOV	23573	33186	36862	36988	33717	36916	27788	32719
DEC	22988	32651	32672	35988	36448	37634	26438	32117
ANNUAL								AADT
AVG	25679	35900	37846	38217	38676	40667	30814	35400
	2							3

Purp

Traffic Data Factors

Qui

- Annual Average Daily Traffic (AADT)
 - AADT Calculation Example Continuous Count Site
 - What is the NB AADT?
 - 35,400
 - What is the SB AADT?
 - 35,625
 - What is the I-110 AADT?
 - $AADT = AADT_{NB} + AADT_{SB}$
 - AADT = 35,400 + 35,625
 - *AADT* = 71,025


					T - REPO		E: ALL	
	ISTRICI			48 – E	SCAMBIA	SITE:	0368	
DI	RECTION	: SOUTH	4					
	SUN	MON	TUE	WED	THR	FRI	SAT	MADT
JAN FEB	19963 22716	29244 35459	35320 38381	36036 38743	36068 39426	38889 42137	25816 29298	31619 35166
MAR	24930	37569	38441	39780	40269	43091	33113	36742
APR	24552	38483	40045	40534	41791	44526	31015	37278
MAY JUN	26001 26349	38584 38572	39527 39281	40236 40030	42178 41393	44989 43418	33823 32900	37905 37420
JUL	26034	38830	40206	37443	41635	43608	32872	37233
AUG	24561 23789	37724	39181 38875	39214 39461	40599 40263	43056 43222	31986 31551	36617 35762
SEP OCT	24552	33172 37343	39047	39922	40263	43222	32069	36688
NOV	22130	33168	37410	37397	34165	37606	27674	32793
DEC	22272	33296	32781	36345	36781	38206	26277	32280
ANNUAL	00007	25054	20000	20762	20501	40176	20700	AAD 35625
AVG	23987	35954	38208	38762	39591	42176	30700	33625
AVG 23987 35954 38208 38762 39591 42176 30700 35625 2 Telemetered Traffic Monitoring Site: Road Name: I-110/SR-8A Site: 480368 Description: I-110, 0.6 MI S OF BRENT LN, PENSACOLA, ESCAMBIA CO. Section: 48270000 Milepoint: 3.417 Lett ope: 20.45101 87.22546 AADT: 71025 one rype. recemetered Class Data: Yes K Factor: 9 D Factor: 65.9 T Factor: 4.4								

luction

Traffic Data Factors

- Annual Average Daily Traffic (AADT)
 - AADT Calculation Example Short-Term Count Site
 - Count Location:
 - SR 809 S of Forest Hill Boulevard
 - Date of Count
 - 3/14/2018
 - Determine
 - SAF
 - ACF
 - AADT

Traffic Data Factors

- Annual Average Daily Traffic (AADT)
 - AADT Calculation Example Short-Term Count Site
 - Steps to calculate SAF
 1 Determine appropriate category
 2 Locate week of count
 3 Note the SAF
 - SAF = 0.95

1		PEAK SEASON FACTOR CATEGO DRY: 9301 CENW OF US1 1		
	WEEK	DATES	SF	MOCF: 0.95 PSCF
2	1 2 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 13 * 14 * 15 * 16 17 18 19 20 21 22 23 24 25 26	$\begin{array}{r} 01/01/2018 & - & 01/06/2018\\ 01/07/2018 & - & 01/13/2018\\ 01/14/2018 & - & 01/20/2018\\ 01/21/2018 & - & 02/03/2018\\ 02/04/2018 & - & 02/10/2018\\ 02/11/2018 & - & 02/10/2018\\ 02/11/2018 & - & 02/17/2018\\ 02/18/2018 & - & 02/24/2018\\ 02/25/2018 & - & 03/03/2018\\ 03/04/2018 & - & 03/10/2018\\ 03/11/2018 & - & 03/10/2018\\ 03/16/2018 & - & 03/24/2018\\ 03/16/2018 & - & 03/31/2018\\ 03/16/2018 & - & 03/31/2018\\ 03/16/2018 & - & 03/24/2018\\ 03/16/2018 & - & 04/07/2018\\ 04/01/2018 & - & 04/07/2018\\ 04/01/2018 & - & 04/21/2018\\ 04/02/2018 & - & 04/28/2018\\ 04/22/2018 & - & 04/28/2018\\ 04/29/2018 & - & 05/05/2018\\ 05/06/2018 & - & 05/12/2018\\ 05/13/2018 & - & 05/12/2018\\ 05/20/2018 & - & 05/26/2018\\ 05/27/2018 & - & 06/02/2018\\ 06/03/2018 & - & 06/09/2018\\ 06/10/2018 & - & 06/23/2018\\ 06/17/2018 & - & 06/23/2018\\ 06/24/2018 & - & 06/30/2018\\ \end{array}$	1.00 0.99 0.98 0.96 0.95 0.94 0.94 0.94 0.94 0.94 0.95 0.96 0.96 0.97 0.97 0.97 0.97 0.99 1.01 1.02 1.04 1.04 1.04 1.04 1.04	1.05 1.05 1.04 1.03 1.01 1.00 0.99 0.99 0.99 0.99 0.99 1.00 1.00 1.00 1.01 1.02 1.02 1.02 1.02 1.02 1.04 1.02 1.02 1.04 1.05 1.01 1.01 1.02 1.02 1.02 1.04 1.01 1.01 1.00 1.11 1.12

F

Traffic

Data Factors

- Annual Average Daily Traffic (AADT)
 - AADT Calculation Example Short-Term Count Site
 - Steps to calculate ACF
 Determine appropriate roadway
 Locate week of count
 Note the ACF
 - ACF = 0.99

		2018 WEEF	KLY AXLE F	ACTOR CATEGORY	REPORT -	REPORT TYPE:	DISTRICT			
	COU	INTY: 93 - PAI	M DEACH							
	000	MTI: 35 - FAI	LM DEACH					17		
	WEEK	DATES		9330			331		9332	
				15,AV E-HOOKEP	R HW	SR700,CR880-5		SR809,	SR802 -	PGA
'ay		1/2018 - 01/0		0.93			.83		0.99	
/		7/2018 - 01/3		0.93			.83		0.99	
		4/2018 - 01/2		0.93			.83		0.99	
		1/2018 - 01/2		0.93		0.	.83		0.99	
		8/2018 - 02/0		0.92			.83		0.99	
		4/2018 - 02/3		0.92			.83		0.99	
		1/2018 - 02/1		0.92			.83		0.99	
		8/2018 - 02/2		0.91			.83		0.99	
		25/2018 - 03/0	J3/2018	0.91			.83 .83		0.99	
		1/2018 - 03/3		0.91 0.91			.83	2	0.99	
(2)		.0/2010 - 03/2		0.90			.83		0.99	
		$\frac{10}{2018} - \frac{10}{3}$		0.90		0.	.83		0.99	
		1/2018 - 04/(0.90			.83		0.99	
		8/2018 - 04/1		0.89			.83		0.99	
		5/2018 - 04/2		0.89			.83		0.99	
		2/2018 - 04/2		0.89			.83		0.99	
		9/2018 - 05/0		0.89			.83		0.99	
	19 05/0	6/2018 - 05/1	12/2018	0.89		0.	.83		0.99	
	20 05/1	3/2018 - 05/1	19/2018	0.89		0.	.83		0.99	
		20/2018 - 05/2	26/2018	0.90		0.	.83		0.99	
		27/2018 - 06/0		0.90			.83		0.99	
		3/2018 - 06/0		0.90			.83		0.99	
		.0/2018 - 06/3		0.90			.83		0.99	
		.7/2018 - 06/2		0.90			.83		0.99	
	26 06/2	4/2018 - 06/3	30/2018	0.90		0.	.83		0.99	

- Annual Average Daily Traffic (AADT)
 - AADT Calculation Example Short-Term Count Site
 - Steps to calculate AADT
 1 Determine the ADT
 2 Calculate AADT
 - $AADT = ADT \times SF \times ACF$
 - $AADT = 49,615 \times 0.95 \times 0.99$
 - *AADT* = 47,000 *vehicles*

START START	N: PTION:	03/14/2 0000		REST H	HILL BLVD	(COUNTY	LINK:	3642)			
TIME			CTION: 3RD			1ST	2ND		4TH	TOTAL	COMBINED TOTAL
0100 0200 0300 0500 0600 0700 0800 0900 1000 1000 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200	27 47 21 36 55 94 270 288 409 313 371 413 401 405 380 406 455 410 275	294 317 302 380 358 437 400 434 367 258 267 258 166	38 20 42 63 440 305 293 363 422 365 422 365 422 3422 3422 319 269 2172	37 18 25 93 246 427 441 382 311 431 350 441 452 268 295 195 147	216 128 116 82 176 280 697 1516 1409 1413 1219 1545 1588 1588 1501 1685 1488 1678 1765 1753 1364 1096 973	82 23 27 14 44 27 112 3384 293 294 283 2961 442 399 414 463 406 3499 414 463 406 280	53 21 15 58 140 373 2294 3102 3455 4285 4285 4285 4266 2266 220	40 33 11 22 223 452 346 346 346 346 346 379 437 438 445 445 410 376 255 184	40 31 15 36 258 454 2799 3598 432 2492 4528 432 4528 432 2492 4528 4294 2258 2258	100 74 86 122 228 733 1618 1389 1154 1222 1309 1500 1757 1470 1728 1740 1832 1655 1540 1065 919	228 190 168 298 508 1430 3134 2798 2567 2441 2854 3088 3258 3258 3255 3216 3418 3597 3408 2904 2161
	ISS R TOTAL				25004				, , ,	(1)	49615

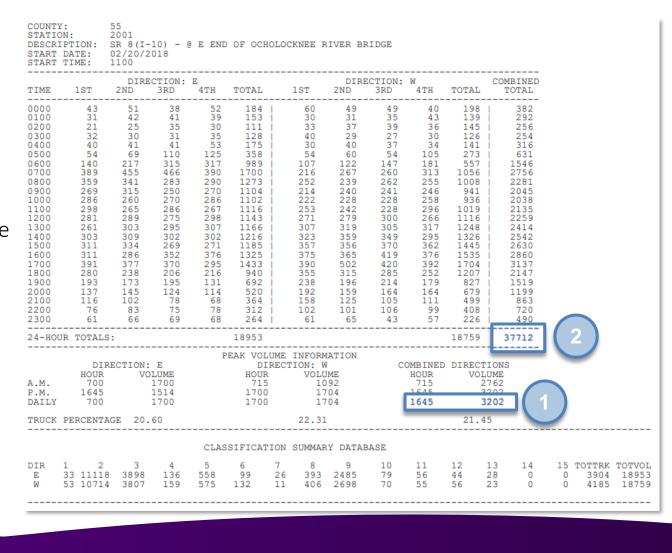
_____Pi

Traffic Data Factors

Q

- K Factor
 - K Factor
 - Defined as the proportion of AADT occurring in the peak hour
 - Most Critical Period of Operations
 - $K Factor = \frac{Total Peak Hour Volume}{Daily Volume}$

Purpo


Data

Traffic Data Factors

• K Factor

- Determine the K Factor from the count data
 - Steps to calculate K Factor
 Determine the Daily Peak Hour Volume
 - 2 Determine the Daily Volume
 - 3 Calculate the K Factor

• K Factor =
$$\frac{Total Peak Hour Volume}{Daily Volume}$$

• K Factor = $\frac{3,202}{37,712}$ = 8.5%

Traffic Data Factors

Quiz

• Standard K Factor

- FDOT prescribes a Standard K Factor
 - For Traffic Forecasting Projects
 - Cost-Effective Measure
- A Standard K is recommended for a project based on its geographic context
 - Large/Core Urbanized Area
 - Other Urbanized Area
 - Transitioning to Urbanized Area
 - Urban Area
 - Rural Area

tion

Traffic Data Factors

Qu

FDOT Standard K Factors

Area (Population)	Facility Type	Standard K Factor (% AADT)*	Representative Time Period	
Large Urbanized Areas with Core Freeways	Freeways	8.0 - 9.0 ***	Typical weekday peak period or hour	
(1,000,000+)	Arterials & Highways	9.0 **	Typical weekday peak hour	
Other Urbanized Areas	Freeways	9.0 **	Typical weakday peak bour	
(50,000+)	Arterials & Highways	9.0	Typical weekday peak hour	
Transitioning to Urbanized Areas	Freeways	0.0	Turical weakdow peak bow	
(Uncertain)	Arterials & Highways	9.0	Typical weekday peak hour	
Urban	Freeways	10.5	100 th highest hour of the year	
(5,000-50,000)	Arterials & Highways	9.0**	Typical weekday peak hour	
	Freeways	10.5		
Rural (<5,000)	Arterials	9.5**	100 th highest hour of the year	
	Highways	9.5		

* Some smoothing of values at area boundaries/edges would be desirable.

** Value is 7.5% in approved Multimodal Transportation Districts where automobile movements are deemphasized. This lower value represents an extensive multi-hour peak period rather than a peak hour.

*** Value is 8.0% for FDOT-designated urbanized core freeways and may either be 8.5% or 9.0% for non-core freeways. Values less than 9% essentially represent a multi-hour peak period rather than a peak hour.

е

Traffic Data Factors

• Directional Factor (D Factor)

- Directional Distribution is the percentage of the total, two-way hourly traffic traveling in the peak direction
- Always $\geq 50\%$
- Determination of D Factor
 - Continuous count sites
 - Median D for the highest 200 hours
 - Short-term count sites
 - $D Factor = \frac{\max(Volume_{Peak1}, Volume_{Peak2})}{Combined Peak Hour Volume}$

Purpos

Traffic Data Factors

- Directional Factor (D Factor) Example
 - Determine the D Factor from the count data
 - Steps to calculate D Factor
 Determine the Daily Peak Hour
 Calculate D Factor

• $D \ Factor = \frac{\max(Volume_{Peak1}, Volume_{Peak2})}{Combined \ Peak \ Hour \ Volume}$

Traffic

Data Factors

•
$$D Factor = \frac{\max(1,700,1,704)}{3,202} = 53.2\%$$

TIME 1ST 2N 0000 43 0100 31 0200 21 0300 32 0400 40 0500 54 0600 140 2 0700 389 4 0800 359 3 0000 269 3 1000 266 2 1100 286 2 1100 286 2 1100 286 2 1100 281 2 1300 261 3 1400 303 3 1400 301 3 1600 311 2 1700 391 3 1600 311 2 1700 391 3 1600 311 2 1700 391 3 1600 116 1 2200 76 2 2300 61 DIRECT HOUR A.M. 700 M. 255 DAILY 700	DIRECTION	N: E	TOTAL 184 153 111 128 175 358 989	1.07	DIRECTI	- A -	H TOTAL	COMBINED TOTAL			
DIRECT HOUR A.M. 700 DAILY 700	51 38 42 41 25 35 30 31 41 41 69 110 217 315 455 466 341 283	8 52 1 39 5 30 51 35 1 53 .0 125 .5 317 .6 390	184 153 111 128 175 358 989	60 30 33 40	49 31	49	40 100				
DIRECT HOUR A.M. 700 DML 1615 DAILY 700	315 250 260 270 265 289 303 295 3034 269 288 352 377 370 238 206 173 195 145 124 102 78 83 75 66 69	3 290 60 270 00 286 16 267 15 298 15 307 12 302 13 246 14 114 15 131 14 114 15 78 19 68	1700 1273 1104 1102 1116 1116 1116 1116 1116 1125 1433 940 692 520 364 312 264	30 54 107 216 252 214 222 253 271 307 323 357 390 355 238 192 158 102 61	37 29 40 60 122 1 267 2 239 2 240 2 240 2 240 2 240 2 240 2 319 3 359 3 356 3 356 4 319 2 319 2 319 2 196 2 207 207 2 207 207 207 207 207 207 207 207 207 207	35 39 27 37 54 1 60 32 62 22 28 22 28 22 28 22 28 22 28 22 2005 3 24 9 22 05 3 31 19 32 20 32 20 21 22 22 22 22 22 22 22 22 22 22 22 22		382 292 256 254 316 631 1546 2756 2281 2045 2038 2135 2259 2414 2542 2630 3137 2147 1519 1199 863 720 490			
HOUR A.M. 700 DAILY 700			10000				10/00	01112			
DAILY 700	CTION: E VOLUME 1700		AK VOLUME DIREC HOUR 715 1700	TION: W VOLUM	2						
	1700		1700	170	1			3202	1		
	1700			22.31			21.	45			
	1700		IFICATION	SUMMARY	DATABASE	1					
DIR 1 2 E 33 11118 3 W 53 10714 3	1700	CLASS		8	9 1	.0 11	12	13 14	15 T 0	OTTRK 3904	TOTVO 1895

- Directional Factor (D Factor)
 - D-Factor sources
 - FTO website
 - If FTO traffic counts for the project site are not available,
 - Obtain short-term traffic counts (Field)
 - Determine hourly traffic volume distribution
 - Calculated D-Factors should be checked to assure they are within the allowable range

Recommended D-Factors for Project Traffic Forecasting

	Road Type	Low	D	High	Standard Deviation
	Rural Freeway	52.3	54.8	57.3	1.73
<u>)</u>	Rural Arterial	51.1	58.1	79.6	6.29
	Urban Freeway	50.4	55.8	61.2	4.11
	Urban Arterial	50.8	57.9	67.1	4.60

Data Factors

Traffic

- Percent Trucks
 - Daily Truck Percentage (T or T₂₄)
 - The percentage of truck traffic during the day
 - Daily Truck Volume $(DTV) = AADT \times T$
 - Peak Hour T Percentage (DHT or T_f)
 - The percentage of truck traffic during the peak hour
 - $DHT = \frac{T}{2}$
 - Common Uses for T Factors
 - Capacity Analysis
 - Pavement Design

•	6

Traffic Data Factors

- Percent Trucks Capacity Analysis Example
 - Determine the DHT Factor from the count data
 - Steps to calculate T Factor
 Determine the T Factor
 - T = 21.45%
 - 2 Calculate the DHT

$$DHT = \frac{T}{2}$$

$$DHT = \frac{21.45}{2} = 10.73\%$$

START START	DATE: TIME:	02/20/2	2018	3 E END	OF OCH	IOLOCKNEE	RIVER E	BRIDGE									
		DIR	ECTION:	E 4TH	TOTAL	1ST	DIF 2ND	RECTION: 3RD	W 4TH	TOTAL	COMBINED TOTAL						
 0000 0100 0200 0300 0400 0500 0600 0700 0900 1000 1200 1200 1300 1400 1500 1500 1600 1700 1800 2000 2100 2200	43 31 21 32 40 54 140 389 269 286 298 281 261 303 311 301 280 193 137 116 766	51 42 25 30 41 69 217 455 341 315 260 265 289 303 309 334 286 377 238 173 145 102 83	38 41 35 31 41 110 315 250 270 286 283 270 286 275 295 302 269 352 370 206 195 124 78 75 55	52 39 30 53 125 317 390 290 286 267 298 207 298 307 302 271 376 295 131 114 68 78	184 153 111 128 175 358 989 1700 1273 1100 1273 1102 1116 1143 1166 1216 1143 1143 1166 1216 1143 1325 1433 940 692 520 364 312	60 30 33 40 54 107 216 252 214 222 253 271 307 323 357 375 375 355 238 192 158 102	49 31 37 29 40 60 122 267 239 240 228 242 279 319 359 356 365 502 3155 196 159 1255 101	49 35 39 27 54 147 260 262 241 228 300 305 349 420 305 349 420 285 214 164 105 106	40 43 36 34 105 181 313 255 246 258 296 258 296 252 376 392 252 252 179 164 111 99 9	198 139 145 126 141 273 557 1056 1008 936 1019 1116 1248 1326 1445 1535 1704 1207 827 679 499 408	TOTAL 382 292 256 254 316 2756 2756 281 2045 2038 2135 2259 2414 2542 2630 2860 3137 2147 1519 199 863 720 490 37712						
24-HO	UR TOTAL	s:			18953					18759	37712						
A.M. P.M. DAILY	DI HOUR 700 1645 700	RECTION	: E DLUME 1700 1514 1700	P	EAK VOI DI HOUR 715 1700 1700	UME INFOR	RMATION W LUME 1092 1704 1704	С	OMBINED HOUR 715 1645 1645	D DIRECT VOL 2 3 3 21.4	IONS UME 762 202 202						
	PERCENT.					22.3)))))	J
DID	1 0	2				ION SUMM			11	10	10 14	15	15 00000	15 000000		15 00000012 00	15 0000017 0000
E W	33 1111 53 1071																15 TOTTRK TOTV 0 3904 189 0 4185 18

Traffic Data Factors

COUNTY:

STATION:

55

2001

A E END OF OCHOLOCKN

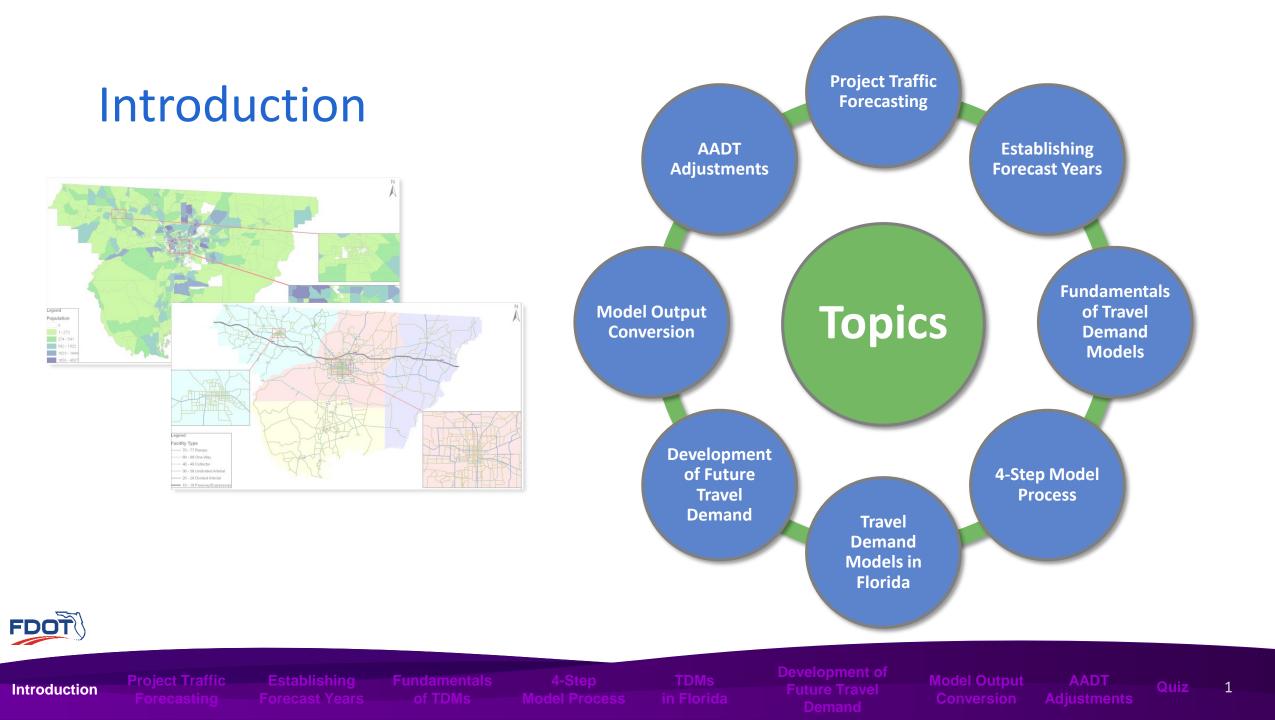
Qu

Traffic Data Sources and Factors

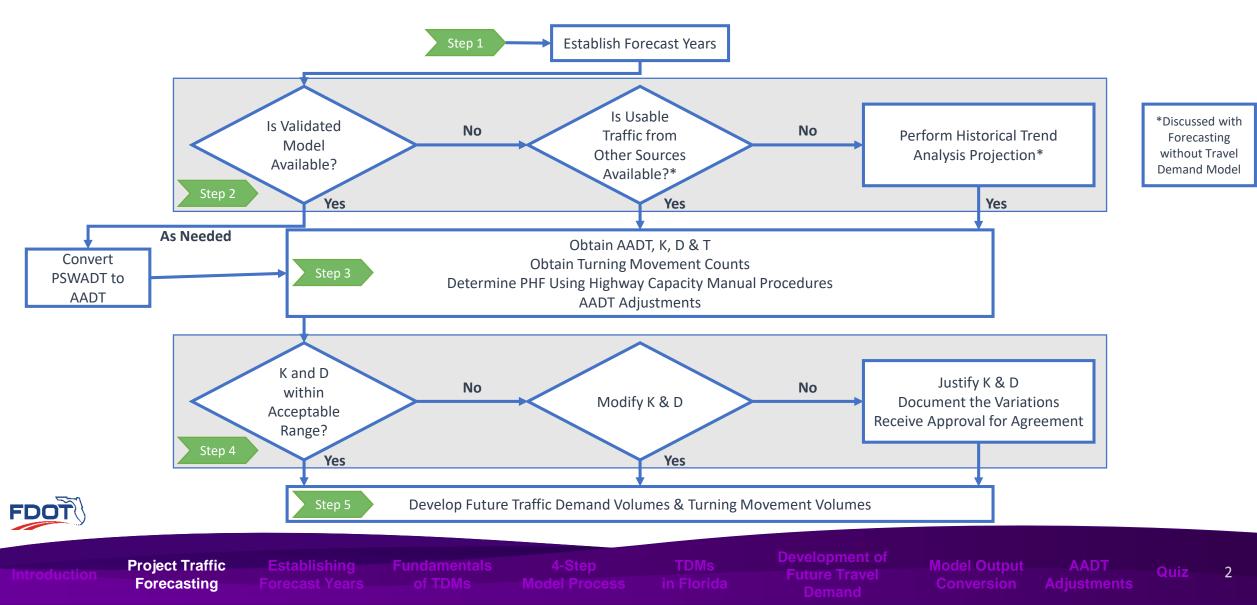
QUIZ

Project Traffic FORECASTING

HANDBOOK 2019


Forecasting with a **Travel Demand** Model **Project Traffic**

FORECASTING


HANDBOOK 2019

- Introduction
- Project Traffic Forecasting
- Establishing Forecast Years
- Fundamentals of TDMs
- 4-Step Model Process
- TDMs in Florida
- Development of Future Travel Demand
- Model Output Conversion
- AADT Adjustments
- Quiz

Project Traffic Forecasting

Establishing Forecast Years

Model Forecasting Years

- Base Year: Year traffic conditions in model is adjusted to replicate
- Horizon Year: Future model year that corresponds to LRTP Horizon year

Analysis Forecasting Years

- Existing Year: Most recent year traffic counts
- Opening Year: One year after project is scheduled to be open
- Interim Year: Halfway between Opening Year and Design Year
- Design Year: Year the roadway is designed, usually 20 years after Opening Year

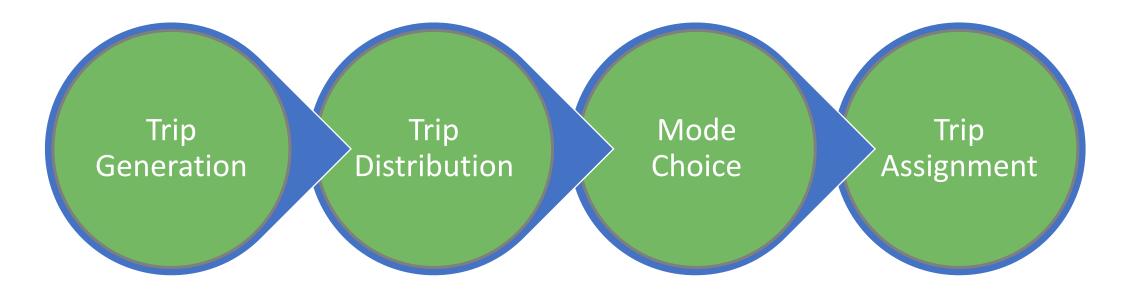
Project Traffic Forecasting Establishing Forecast <u>Years</u> Ils 4-Ste Model Pro TDMs in Florida Development of Future Travel Demand Model Output A Conversion Adjus

Fundamentals of Travel Demand Models

- Travel Demand Models
 - Developed based on mathematical equations representing
 - Used to forecast travel demand on future transportation facilities
- Additional information on the modeling process can be found on the http://www.fsutmsonline.net/index.php

Land Use and Economic **Development**

Household and Individual Behavior


Transportation System Performance

Fundamentals

of TDMs

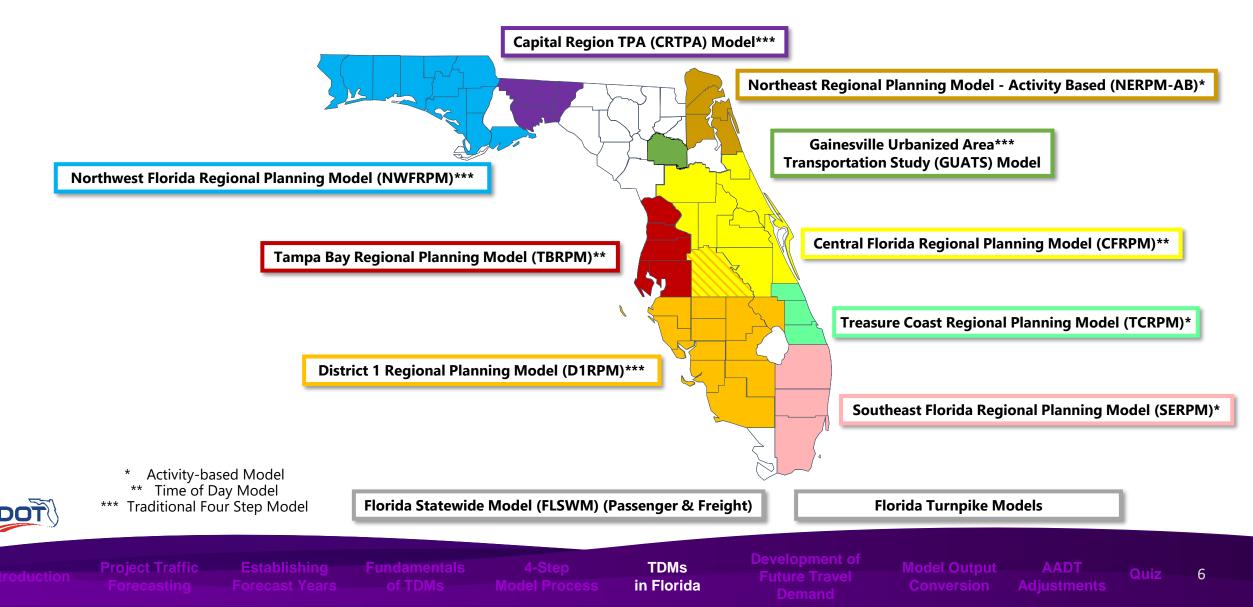
4-Step Model Process

- Most TDMs used in Florida are 4-Step Models
- Additional Types of Models:
 - Time of Day Model
 - Activity-Based Model

FDOT

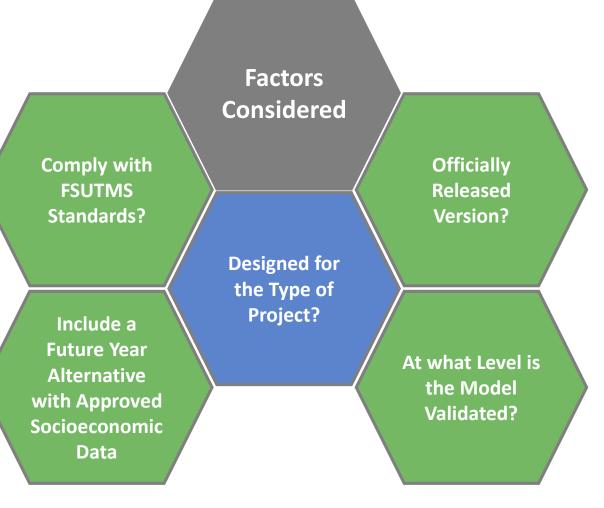
ect Traffic Establis ecasting Forecast

ecast Years of


4-Step Model Pro<u>cess</u> TDMs D n Florida

Future Travel

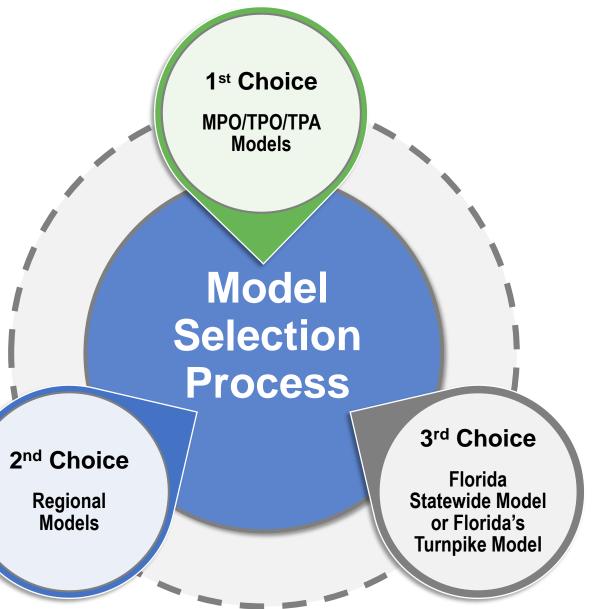
Model Output Conversion Adj


AAD I Qui Istments

Travel Demand Models in Florida

Travel Demand Models in Florida

- Factors Considered when Selecting a Model
 - When adopted FSUTMS models are shown to be inadequate
 - Document the deficiencies
 - Recommend Alternatives
 - A non-FSUTMS model
 - A combination of other approaches
 - Obtain approval from the District


on Forecet

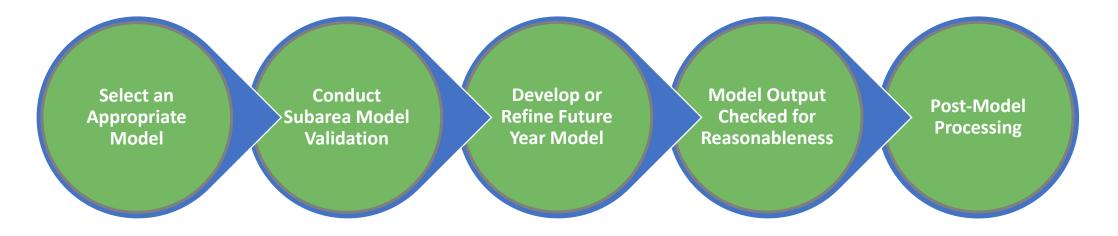
Establishing Forecast Yea als 4-Ste Model Pro TDMs in Florida evelopment of Future Travel Demand

Model Output Conversion Ad

Travel Demand Models in Florida

- Florida's modeling web portal provides all available models
 - <u>http://www.fsutmsonline.net</u> /index.php

Project Tuction


g Forecast Ye

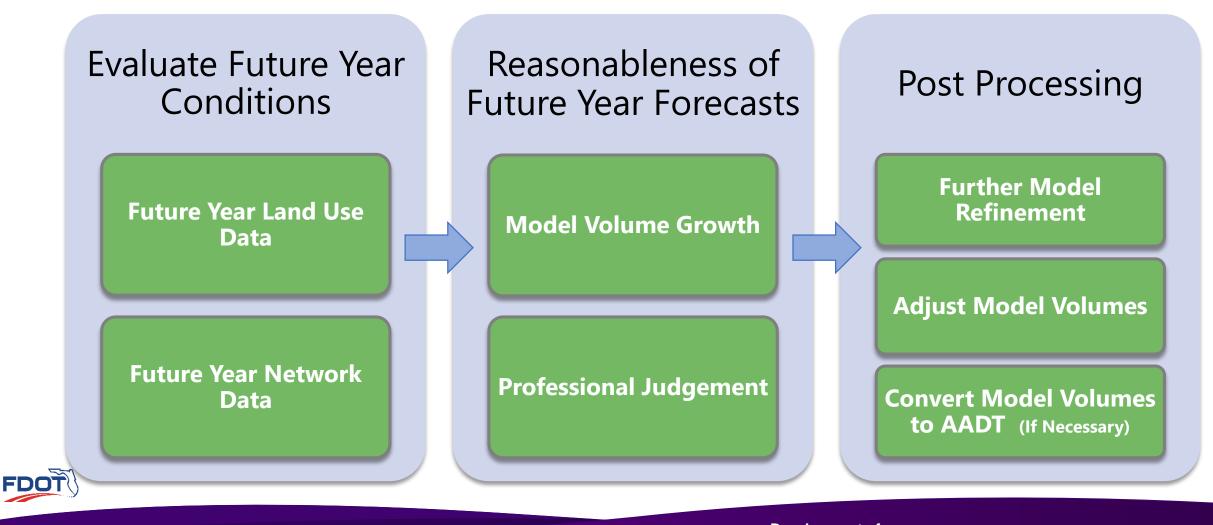
ndamentals of TDMs TDMs in Florida Development o Future Travel Demand Model Output Conversion

Quiz s

Development of Future Travel Demand

• Demand Forecasting with Model Process

- Model chosen typically
 - Adopts the Long-Range Transportation Plan (LRTP) Cost Feasible Network
 - Includes approved employment and population data



on Forect T

Establishing Forecast Year amentals TDMs Mod TDMs in Florida Development of Future Travel Demand

Model Output AA Conversion Adjus

Development of Future Travel Demand

Development of Future Travel Demand

Model Output Conversion

Peak Season Weekday Average Daily Traffic (PSWADT)

- Most Florida models are validated to peak season travel conditions
- Peak Season is the 13 consecutive weeks of the year with the highest traffic volumes
- Some models in Florida are validated to AADT volumes
 - SERPM
 - TCRPM
 - FLSWM

PSWADT Volumes Need to be Converted to AADT Volumes

Project Traff Forecasting

Establishing Forecast Years tals 4-8 s Model TDMs in Florida evelopment o Future Travel Demand

Model Output Conversion

AAD I Adjustments

Model Output Conversion

- Model Output Conversion Factor (MOCF)
 - Used to convert PSWADT to AADT
 - $AADT = PSWADT \times MOCF$
 - Reported in the Peak Season Factor Category Report
 - Report available on FTO Website
 - Average of 13 SFs during the peak season
 - Example:

•
$$MOCF = \frac{12.36}{13}$$

• $MOCF = 0.95$

2018 PEAK SEASON FACTOR CATEGORY REPORT - REPORT TYPE: DISTRICT CATEGORY: 1600 POLK COUNTYWIDE												
WEEK	DATES	SF	MOCF: 0.95									
1 2 3 4 * 5 * 7 * 8 9 * 10 * 11 * 12 * 13 * 14 * 15 * 16 * 17	01/01/2018 - 01/06/2018 01/07/2018 - 01/13/2018 01/14/2018 - 01/20/2018 01/21/2018 - 01/27/2018 01/28/2018 - 02/03/2018 02/04/2018 - 02/10/2018 02/11/2018 - 02/17/2018 02/18/2018 - 03/03/2018 03/04/2018 - 03/10/2018 03/11/2018 - 03/10/2018 03/18/2018 - 03/24/2018 03/18/2018 - 03/31/2018 03/25/2018 - 03/31/2018 04/01/2018 - 04/07/2018 04/08/2018 - 04/14/2018 04/15/2018 - 04/21/2018	1.01 1.03 1.01 0.99 0.97 0.95 0.94 0.94 0.93 0.92 0.93 0.94 0.95 0.96										
18 19 20 21		1.01 1.03 1.03	1.05 1.06 1.08 1.08									
22 23		1.03	1.08 1.09									

	Pro	ject	Tra
auction			

Forecast Years

ls 4-Step Model Proc TDMs in Florida evelopment Future Trave Demand

Model Output Conversion

ion Adjustmen

Model Output Conversion

- Peak Season Conversion Factors (PSCF)
 - Used to convert ADT to PSWADT
 - $PSWADT = ADT \times PSCF$
 - Reported in the Peak Season Factor Category Report
 - Report available on <u>FTO Website</u>

CATEGO	DRY: 1600 PC	LK COUNTYWIDE		MOCF: 0.95	1
WEEK	DATE	s	SF	PSCF 0.95	
1 2 3 4 5 6 7 * 8 9 * 10 * 11 * 12	01/07/2018 01/14/2018 01/21/2018 01/28/2018 02/04/2018 02/11/2018 02/18/2018 02/25/2018 03/04/2018 03/11/2018	- 01/06/2018 - 01/13/2018 - 01/20/2018 - 01/27/2018 - 02/03/2018 - 02/10/2018 - 02/17/2018 - 02/24/2018 - 03/03/2018 - 03/10/2018 - 03/17/2018 - 03/24/2018	1.01 1.03 1.01 0.99 0.97 0.95 0.94 0.94 0.94 0.93 0.92	1.03 1.06 1.08 1.06 1.04 1.02 1.00 0.99 0.99 0.99 0.98 0.97 0.98	
*13 *14 *15 *16 *17 18 19 20 21 22 23	03/25/2018 04/01/2018 04/08/2018 04/15/2018 04/22/2018 04/29/2018 05/06/2018 05/13/2018 05/20/2018 05/27/2018	- 03/31/2018 - 04/07/2018 - 04/14/2018 - 04/21/2018 - 04/28/2018 - 05/05/2018 - 05/12/2018 - 05/19/2018 - 05/26/2018 - 06/02/2018 - 06/09/2018	0.94 0.95 0.96 0.98 1.00 1.01 1.03 1.03	0.99 1.00 1.01 1.01 1.03 1.05 1.06 1.08 1.08 1.08 1.08	

Project Tra

Establishing

of TDMs

4-Step Iodel Process Developmen Future Trav Demand

Model Output Conversion

out AADT n Adjustments

Model Output Conversion

- Peak Season Conversion Factors (PSCF)
 - Obtained by dividing SFs by MOCF for the same week.

•
$$PSCF = \frac{SF}{MOCF}$$

- Needed to convert short-term traffic counts to PSWADT for model validation
- PSCF Example for 03/04/2018 03/10/2018:

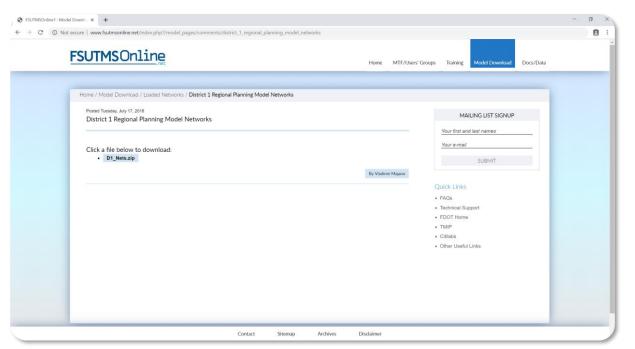
•
$$PSCF = \frac{0.93}{0.95}$$

• $PSCF = 0.98$

	PEAK SEASON FACTOR CATEGORY DRY: 1600 POLK COUNTYWIDE	REPORT	- REPORT TYPE: DISTRICT
WEEK	DATES	SF	MOCF: 0.95 PSCF
1 2 3 4 5 6 * 7 * 8 * 9	01/01/2018 - 01/06/2018 01/07/2018 - 01/13/2018 01/14/2018 - 01/20/2018 01/21/2018 - 01/27/2018 01/28/2018 - 02/03/2018 02/04/2018 - 02/10/2018 02/11/2018 - 02/17/2018 02/18/2018 - 02/24/2018 02/25/2018 - 03/03/2018	0.98 1.01 1.03 1.01 0.99 0.97 0.95 0.94 0.94	1.03 1.06 1.08 1.06 1.04 1.02 1.00 0.99
*10 *12 *13 *14 *15 *16 *17 18 19 20 21 22 23	03/04/2018 - 03/10/2018 03/11/2018 - 03/17/2018 03/18/2018 - 03/24/2018 03/25/2018 - 03/31/2018 04/01/2018 - 04/07/2018 04/08/2018 - 04/14/2018 04/15/2018 - 04/21/2018 04/22/2018 - 04/28/2018 04/29/2018 - 05/05/2018 05/06/2018 - 05/12/2018 05/13/2018 - 05/19/2018 05/20/2018 - 05/26/2018 05/27/2018 - 06/02/2018 06/03/2018 - 06/09/2018	0.93 0.92 0.93 0.94 0.95 0.96 0.96 0.98 1.00 1.01 1.03 1.03 1.03 1.03	0.98 0.99 0.99 1.00 1.01 1.01 1.03 1.05 1.06 1.08 1.08 1.08 1.08

roduction Proj

nffic Establishin ng Forecast Yea


shing Fundam Years <u>of T</u>E 4-Step Model Proces OMs Forida

uture Travel

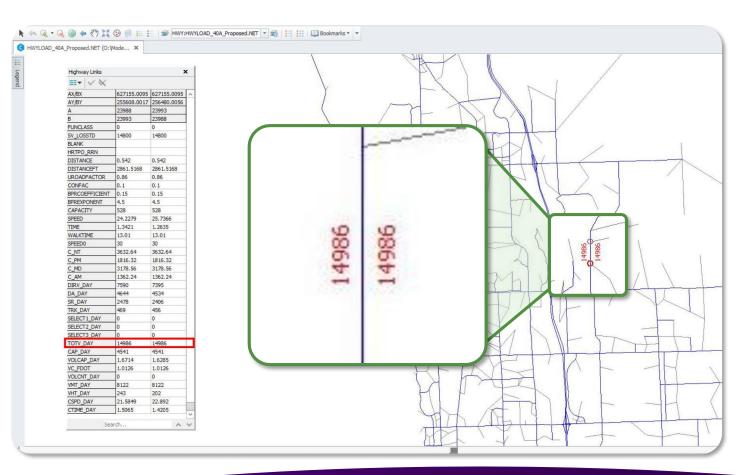
Model Output Conversion

ut AADT n Adjustments

- Determine the AADT from the District 1 Regional Planning Model Output
 - Model has been validated and approved for use
 - Request or download loaded highway network from <u>FSUTMSOnline.net</u>

Project Traffic

Forecast Years


damentals

itep Process iı Development Future Trave Demand

Model Output Conversion

Quiz 15

- AADT from Model Output Example
 - Use Cube Voyager to open the loaded network for 2040, or have the network converted to GIS shapefile
 - Locate the link in the network and make sure to select the correct attribute

on Project Tra

Establishing Forecast Years entals 4-9 //s Model TDI cess in Flo evelopment o Future Travel Demand

Model Output Conversion Ac

AADT Quiz ustments

- AADT from Model Output Example
 - Note PSWADT
 - PSWADT = 14,986
 - Note MOCF
 - MOCF = 0.89
 - Determine AADT
 - $AADT = PSWADT \times MOCF$
 - $AADT = 14,986 \times 0.89 = 13,338$
 - *AADT* = 13,500 (*rounded to nearest* 500)

		ACTOR CATEGORY LIER COUNTYWID		ORT TYPE: DISTRICT
WEEK	DATES		SF	MOCF: 0.89 PSCF
1 2 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12 * 13	01/01/2018 - 01/07/2018 - 01/14/2018 - 01/21/2018 - 01/28/2018 - 02/04/2018 - 02/11/2018 - 02/18/2018 - 02/25/2018 - 03/04/2018 - 03/11/2018 - 03/18/2018 - 03/25/2018 - 04/01/2018 - 04/08/2018 - 04/08/2018 - 04/22/2018 - 04/22/2018 - 05/06/2018 - 05/13/2018 -	01/06/2018 01/13/2018 01/20/2018 01/27/2018 02/03/2018 02/10/2018 02/10/2018 02/17/2018 03/03/2018 03/03/2018 03/10/2018 03/10/2018 03/17/2018 03/24/2018 03/31/2018 03/31/2018 04/07/2018 04/14/2018 04/21/2018 04/22/2018 05/12/2018 05/12/2018 05/12/2018 05/26/2018	0.94 0.94 0.92 0.90 0.89 0.87 0.86 0.86 0.86 0.86 0.86 0.86 0.87 0.88 0.90 0.91 0.93 0.95 0.98 1.01 1.04 1.05	PSCF 1.06 1.06 1.06 1.03 1.01 1.00 0.98 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 1.01 1.02 1.04 1.07 1.10 1.13 1.17 1.18 1.19
23 24	06/03/2018 -	06/09/2018 06/16/2018	1.08	1.21 1.22

FDOT

roduction

ng Forecast Yea

ars of TDMs

4-Step Model Process ſDMs Florida evelopment o uture Travel Demand

Model Output Conversion

Quiz 17

AADT Adjustments

- Model Forecasting Years May Be Different than the Project Analysis Years
 - Base Year of the Model ≠ Project Existing Year
 - Horizon Year of the Model ≠ Project Design Year
- Reasonableness checks are required for model volumes for base year and forecast year
 - Inherent discrepancies between base year model volumes and existing year traffic counts
 - Errors associated with base year assignment could continue in any future year forecast

Analysis Years

- A. Traffic Forecasting
 - Base year 2010
 - Horizon year 2040
- B. Traffic Operational Analysis
 - Existing year 2019
 - Opening year 2025
 - Design year 2045

Project Traf

Establishing Forecast Years of TDMs

p Ti ocess in F evelopment o Future Travel Demand

lodel Output Conversion Ac

AADT Qu Adjustments

AADT Adjustments

- Model Horizon Year Traffic Volume is Adjusted Using Two Methods
 - Ratio adjustment, V_{r_adj}

$$V_{r_adj} = \frac{Count}{V_b} \times V_f$$

• Difference adjustment, V_{d_adj}

 $V_{d_adj} = (Count - V_b) + V_f$

AADT

Adjustments

- Final Adjustment is Made by Averaging the Two Methods
 - Final adjusted forecast, V_{adj}

Forecasting with Travel Demand Model

QUIZ

Project Traffic FORECASTING HANDBOOK 2019

- Introduction
- Project Traffic Forecasting
- Approach to Forecasting without Models
- Traffic Growth Trends
- Using the FDOT Traffic Trends Analysis Tool
- Quiz

Forecasting without a Travel Demand Model

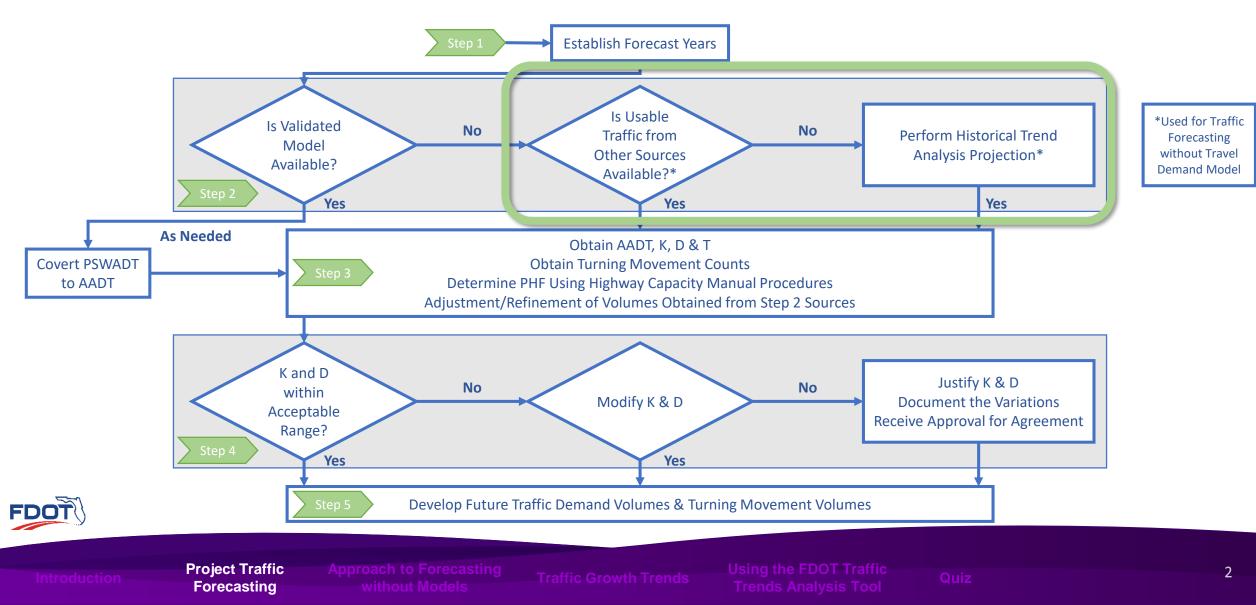
Project Traffic FORECASTING HANDBOOK 2019

Introduction

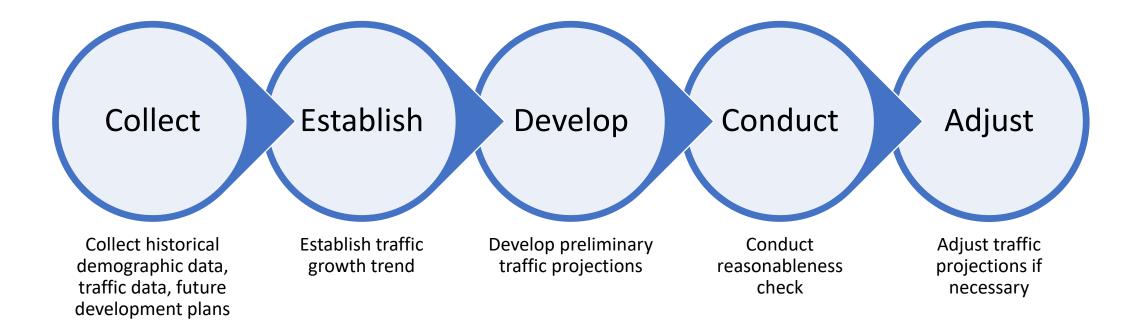
- This Module covers
 - Appropriate methods and practice problems for forecasting future traffic in areas without a model

Introduction

Traffic Appro


thout Models

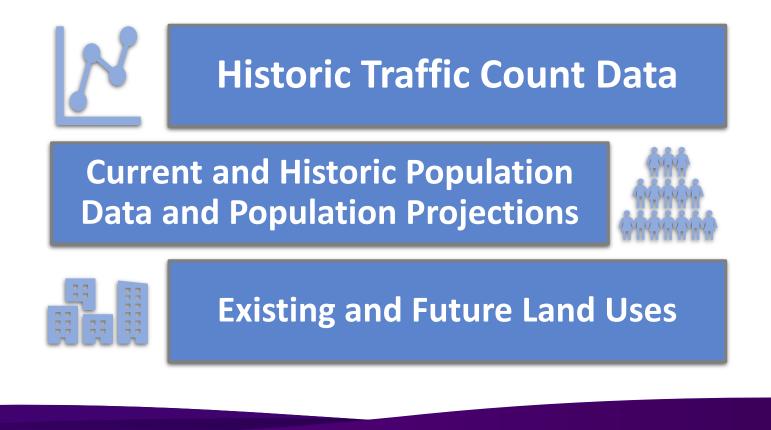
Traffic Growth Trends


sing the FDOT Traff rends Analysis Too

Quiz

Project Traffic Forecasting

Approach to Forecasting without Models



Approach to Forecasting

without Models

• To establish traffic growth trends, the following data is needed

oduction

ect Traffic Apj ecasting to Forecasting

Traffic Growth Trends

sing the FDOT Traff rends Analysis Too

luiz

- Historic Traffic Count Data
 - Used to perform regression analysis
 - 5 to 10 years of historical data is recommended
 - Source: FTO Website

Historic Traffic Count Data

Current and Historic Population Data and Population Projections

Existing and Future Land Uses

FLORIDA DEPARTMENT OF TRANSPORTATION TRANSPORTATION STATISTICS OFFICE 2018 HISTORICAL AADT REPORT

ORANGE

COUNTY: 75

SITE:	0535	-	ON	I-4,	0.880	MI.	Е	OF	SR-535	

YEAR	AADT	DIRECTION 1	DIRECTION 2	*K FACTOR	D FACTOR	T FACTOR
2018	235000 C	E 111000	W 124000	9.00	54.60	6.50
2017	210000 F	E 104000	W 106000	9.00	52.60	7.00
2016	208000 C	E 103000	W 105000	8.50	52.10	7.00
2015	207000 S	E 103000	W 104000	8.50	51.20	11.30
2014	203000 F	E 101000	W 102000	8.50	51.40	4.70
2013	198500 C	E 98500	W 100000	8.50	51.30	5.80
2012	184000 C	E 92000	W 92000	8.50	51.20	4.60
2011	180500 C	E 89000	W 91500	8.50	51.30	4.60
2010	189500 C	E 95500	W 94000	7.45	52.11	4.90
2009	183500 C	E 91500	W 92000	9.89	55.14	4.90
2006	165000 S	E 85000	W 80000	9.69	53.38	7.30
2005	156000 F	E 80500	W 75500	7.30	50.70	6.40
2004	147500 C	E 76000	W 71500	7.90	51.40	5.60
2003	119000 C	E 61500	W 57500	7.90	52.30	7.70

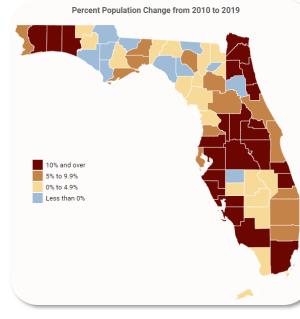
troduction

roject Traffic

Approach to Forecasting without Models

Traffic Growth Trends

sing the FDOT Traff rends Analysis Too


- Population Data
 - Used to assure traffic trends are consistent with projected population growth

Historic Traffic Count Data

Current and Historic Population Data and Population Projections

Existing and Future Land Uses

County Estimates & Projections

Choose a county:

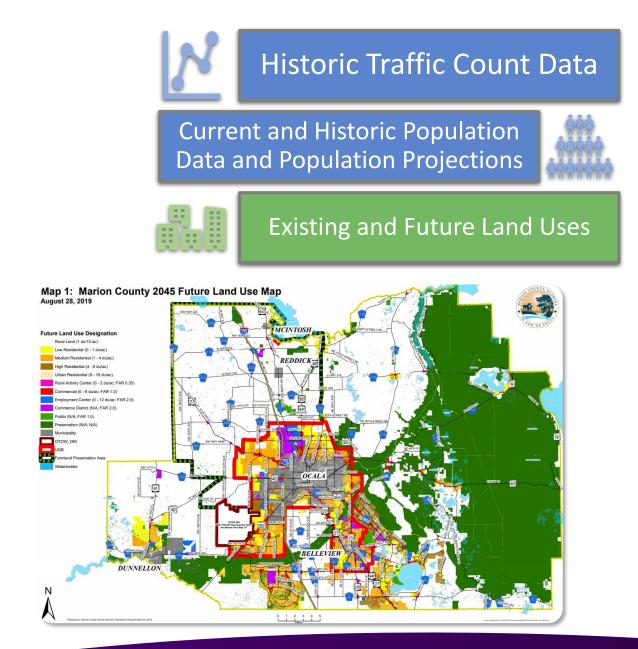
Broward •

2010 Census Count: 1,748,066 2019 Estimate: 1,919,644 2020 Projection: 1,942,700 2030 Projection: 2,120,300 2040 Projection: 2,238,300

• Sources:

- Bureau of Economic and Business Research (BEBR)
- US Census

FDOT


uction

oject Traffic orecasting Approach to Forecasting without Models

Traffic Growth Trends

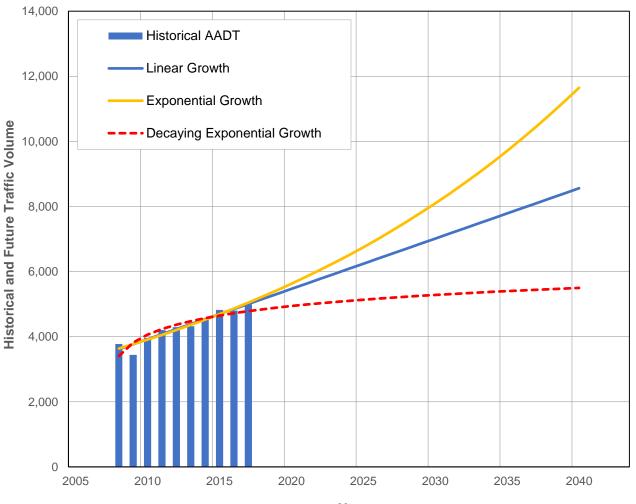
sing the FDOT Traff Frends Analysis Too

- Land Use Data
 - Used to assure traffic trends are consistent with projected development and land use
 - ITE Trip Generation Rates can be used to establish daily trips for the new land uses
 - Source: MPO/TPO/TPAs and Local Government Authorities

ction

Traffic Appro asting w

Traffic Growth Trends


Trends Using the

Qui

Regression Analysis Linear, Exponential, and Decaying Exponential Growth

Traffic Growth Trends

- Regression Analysis
 - Use historical data to perform regression analysis
 - Establishes growth trends to estimate future traffic
 - Three common types of regression
 - Linear: uniform growth over the years
 - Exponential: increasing growth rate in the future
 - Decaying exponential: decreasing growth in the future

Year

duction

oject Traffic precasting Approach to Forecasting without Models

Traffic Growth Trends

sing the FDOT Traffi rends Analysis Tool

Quiz

• Regression Analysis

- Regression analysis can be performed using the
 - FDOT Traffic Trends Analysis Tool
- Current Version
 - trend_v03a.xls

Resources

Project Traffic Forecasting Guidance

- Project Traffic Forecasting Handbook 2019
- Project Traffic Forecasting Procedure (525-030-120-h)
- TURNS5 Turning Movement Analysis Tool Documentation (2014)
- Florida Specific Traffic Data Inputs to the Mechanistic-Empirical Pavement Design Guide (MEPDG)

Project Traffic Forecasting Tools

- Turns5 Turning Movement Analysis Tool (2014)
- Equivalent Single Axle Load Analysis Tool (Version 2)
- Traffic Trends Analysis Tool
- District 4's Turning Movement Tool (TM Tool)

Project Traffic Forecasting Training

Project Traffic Forecasting Training

n Pro

ic Approach to For without Mod

Traffic Growth Trends

ing the FDOT Traffi ends Analysis Too

Quiz

Traffic Trends Analysis Tool - V03.a Main Menu

 Open Excel Spr v03a.xls)

FDOT

	ranic Counts Analysis input - Page 1 or 2
· · · /_ ·	Traffic Count Analysis Input - Page 1 of 2
preadsheet (Trend-	* <u>FIN Number</u> 1234 Location To FTI Database Browse Help/Instructions
	*Select County Orange (75) MapIT Station # 0535 Import Data
	Station Information Project Information required for this analysis. FIN# can be obtained from the Project Branch
	Roadway ID# 75280000 MapIT I-4 If you are unsure, please contact
Traffic Trends Analysis Tool - V03.a Main Menu	Site MP your District Office.
	Site Location Op I 4.0 880 mi 5 of Section Details
Enter Data	0.880 mi. E of SR 535 Axle-Adjustment Factor
Preview	K 10.48 D 62.2
	Select Current and Future Projection Years
Print Graph	CurrentCounts Eirst Year of Data 2009 V Last Year of Data 2018 V
Save Data File	Euture Projection Opening Year 2035 V Mid-Year 2040 Design Year 2045 V
Export XML	TRANSPLAN Data Regression
	TRAMPLAN Future Volumes Available Year(s) Volume 2021 49000
	2025 77000 Number of Years of Data 2035 87000 OK Cancel
Approach to Forecasting	Using the FDOT Traffic

Trends Analysis Tool

- Fill Out Data Entry Screen
 - 1 Enter FIN Number
 - 2 Select County from drop down
 - 3 Enter Station ID
 - 4 Enter "Project Information"
 - 5 Enter "Current and Future Projection Years"
 - 6 Select "Regression Analysis" type7 Click "OK" button

Traffic Counts Analysis Input - Page 1 of 2
Traffic Count Analysis Input - Page 1 of 2
*EIN Number 1 <td< th=""></td<>
Station Information Note the FIN# - Inits Value is required for this analysis, FIN# can be obtained from the Project Scheduling and Management Report. Roadway ID# 75280000 MapIT Site MP Site Type T Site Location On I-4, 0.880 mi. E of SR 535 Site of SR 535 Axle-Adjustment Factor 0.96 Location It of SR 535
Select Current and Future Projection Years CurrentCounts Eirst Year of Data 2009 • Last Year of Data 2018 • Euture Projection Years Ogening Year 2035 • Mid-Year 2040 • Design Year 2045 •
TRANSPLAN Data
TRAMPLAN Future Volumes Available Year(s) Yolume 2021 49000 2025 77000
of Data 3 2035 87000 7 QK Cancel

ntroduction

ect Traffic A ecasting

h to Forecasting Tout Models

Traffic Growth Trends

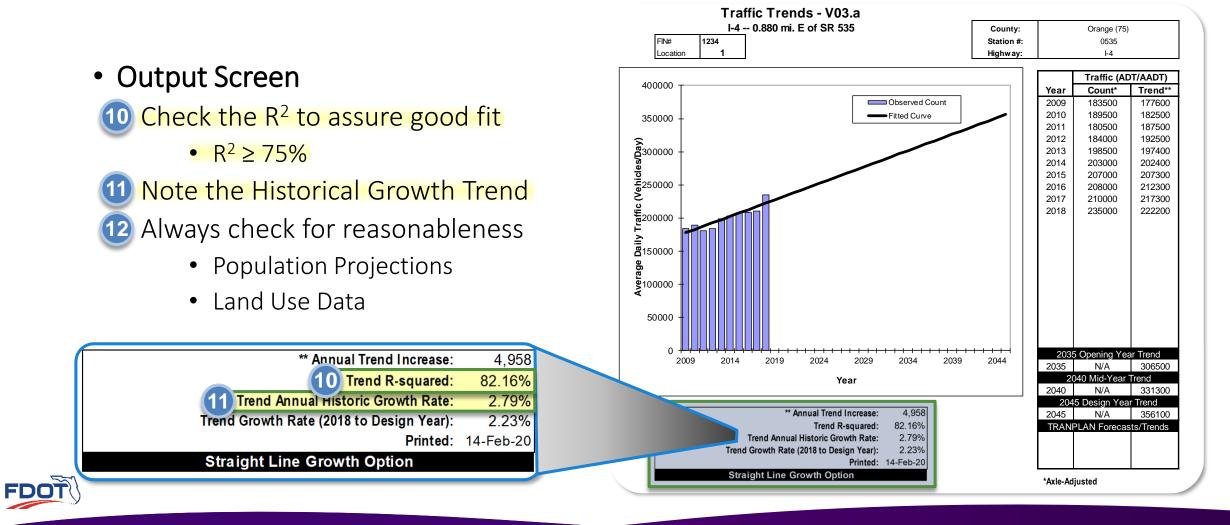
Using the FDOT Traffic Trends Analysis Tool

Quiz

- Fill Out Data Entry Screen
- 8 Input Historical AADT
 - 5 to 10 years of historical AADT
- 9 Click "OK" button

raffic Counts Analysis - Page 2 of 2	×								
Traffic Count Analysis Input - Page 2 of 2									
Historical Traffic Data	Help/Instructions 🔯								
Year Traffic Count 2009 183500 2010 189500 2011 180500 2012 184000 2013 198500 2014 203000 2015 207000 2016 208000 2017 210000 2018 235000									
Based on the years indicated on the previous screen, enter the volumes in the boxes for each year. Enter zero for any years for which data are not available. However, the last and first years must be non-zero values.	Import AADT From FTI CD								

troduction


ect Traffic Ap ecasting

roach to Forecasting without Models

Traffic Growth Trends

Using the FDOT Traffic Trends Analysis Tool

Quiz

Introduction

ct Traffic App ecasting

Approach to Forecasting without Models

Traffic Growth Trends

Using the FDOT Traffic Trends Analysis Tool

luiz

- Perform Steps 1-2 of the Project Traffic Forecasting without a Travel Demand Model. Also, develop 2043 AADT with the estimated growth rate.
 - Project Location:
 - I-75 at I-10 System to System Interchange
 - Columbia County

FDOT

ction

ect Traffic A_l ecasting proach to Forecasting without Models

Traffic Growth Trends

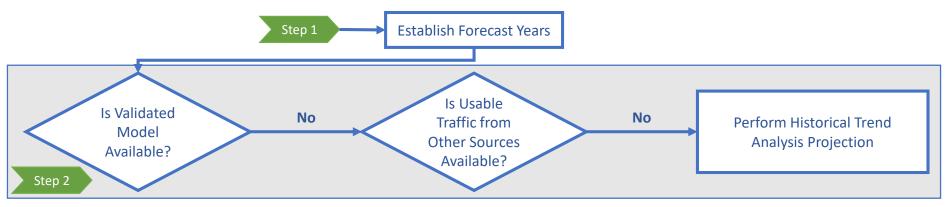
Using the FDOT Traffic Trends Analysis Tool

Quiz

- Project Characteristics
 - Area type
 - Rural Area
 - Validated Model Not Available
 - No classification counts available
 - Historical AADT Data Available from 2008 to 2016
 - Recent BEBR Population Data Available

luction

pect Traffic

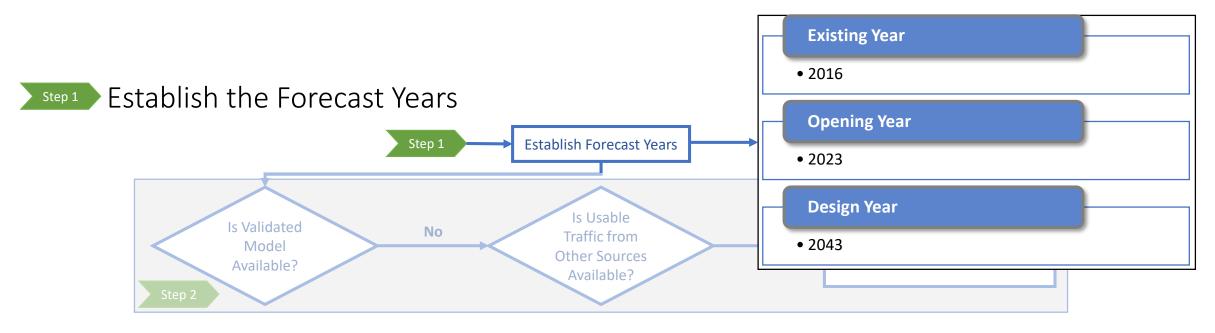

oroach to Forecasting without Models

Traffic Growth Trends

Using the FDOT Traffic Trends Analysis Tool

Quiz

• Steps 1-2


roduction

ject Traffic A recasting without Models

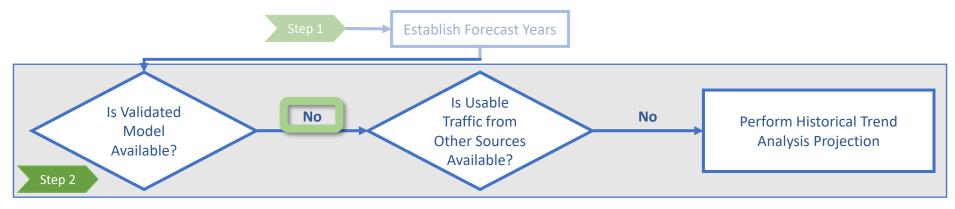
Traffic Growth Trends

Using the FDOT Traffic Trends Analysis Tool

luiz

ntroduction

ect Traffic Al recasting


without Models

Traffic Growth Trends

Using the FDOT Traffic Trends Analysis Tool

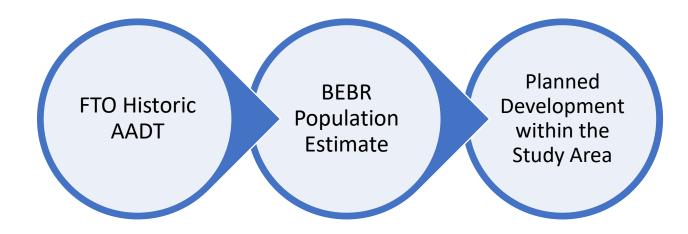
uiz

Step 2 Is Validated Model Available?

troduction

ject Traffic A precasting

oach to Forecasting without Models


Traffic Growth Trends

Using the FDOT Traffic Trends Analysis Tool

uiz

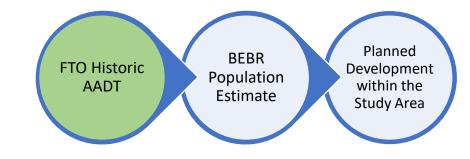
Step 2 Perform Historic Trend Analysis Projection

• Assemble Available Data

roduction

ct Traffic Appi casting

n to Forecasting Tra


Traffic Growth Trends

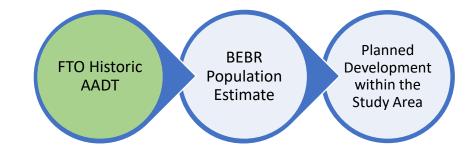
Using the FDOT Traffic Trends Analysis Tool

Quiz

Step 2 Perform Historic Trend Analysis Projection

- Gather Historic AADT from FTO
- 9 years data (2008-2016)
- Historical growth rate estimated based on regression analysis from 8 FDOT count stations
- Regression Analysis
 - Linear Regression Performed using FDOT's Trends Analysis Tool
 - Dependence of the second secon

FDOT

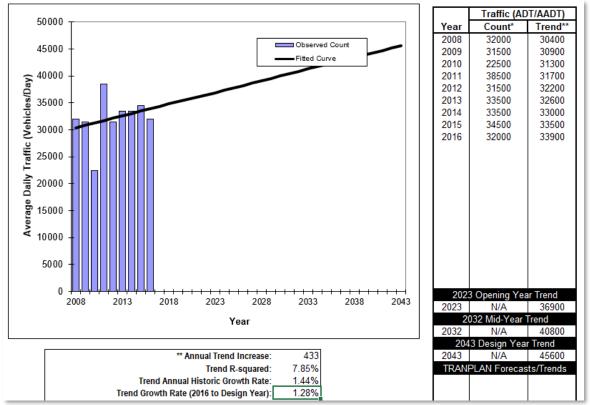

ntroduction

ject Traffic precasting Approach to Forecasting without Models

Traffic Growth Trends

Using the FDOT Traffic Trends Analysis Tool

Quiz


Step 2 Perform Historic Trend Analysis Projection

Gather Historic AADT from FTO

1a Linear Regression

	Description	FTO Station	Annual Historical Growth Rate	R Square*	Average
	I-75 South of I-10	290320	0.49%	38.01%	
Mainline	I-75 North of I-10	290324	1.44%	7.85%	1 010/
	I-10 West of I-75	370144	1.45%	19.67%	1.01%
	I-10 East of I-75	290247	0.64%	1.38%	
	I-75 NB to I-10 WB	290280	5.17%	62.09%	
Ramps	I-75 SB to I-10 EB	290281	2.84%	19.50%	4.270/
	I-10 EB to I-75 SB	290291	4.32%	72.74%	4.27%
	I-10 WB to I-75 NB	290293	4.73%	68.51%	

Introduction

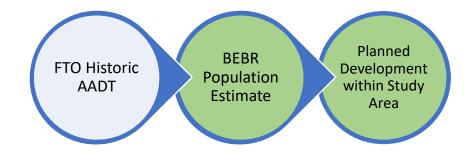
ject Traffic recasting Approach to Forecasting without Models

Traffic Growth Trends

Using the FDOT Traffic Trends Analysis Tool

Quiz

Step 2 Perform Historic Trend Analysis Projection


Gather Historic AADT from FTO **1**b CAGR Method

Planned BEBR **FTO Historic** Development Population AADT within the Estimate Study Area Compound Growth Rate = $\left(\frac{V_n}{V_o}\right)^{\left(\frac{1}{n}\right)} - 1$ $V_n = Ending Value$ $V_o = Starting Value$ n = Number of Years

	Description	FTO Station	2016	2015	2014	2013	2012	2011	2010	2009	2008	CAGR	Average
	I-75 South of I-10	290320	46,000	44,266	45,411	44,727	43,123	43,371	44,697	44,436	43,271	0.77%	
Matalian	I-75 North of I-10	290324	32,000	34,500	33,500	33,500	31,500	38,500	22,500	31,500	32,000		
Mainline	I-10 West of I-75	370144	25,500	25,500	22,000	22,500	21,000	20,500	23,500	21,000	24,000	0.76%	1.12%
	I-10 East of I-75	290247	21,500	19,000	18,000	14,200	14,100	18,500	18,600	19,000	18,600	1.83%	
Ramps	I-75 NB to I-10 WB	290280	8,200	9,100	7,200	6,700	6,000	6,900	7,000	6,000	6,000	3.98%	
	I-75 SB to I-10 EB	290281	5,700	5,600	5,500	5,000	4,200	4,400	4,100	4,000	5,900	-0.43%	2.04%
	I-10 EB to I-75 SB	290291	7,700	7,300	6,700	6,400	6,000	6,900	6,200	5,300	5,800	3.61%	2.84%
	I-10 WB to I-75 NB	290293	5,000	5,000	4,300	5,200	4,600	4,300	4,400	3,600	3,600	4.19%	

Using the FDOT Traffic Trends Analysis Tool

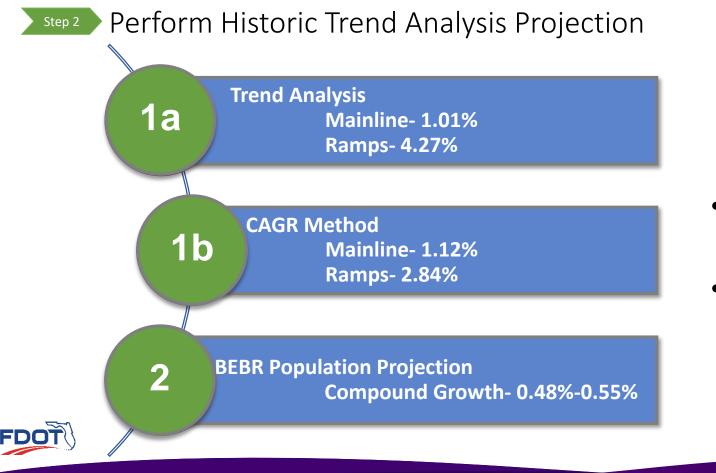
Perform Historic Trend Analysis Projection

2 Gather BEBR Population Estimates (Medium)

Year	Columbia County			
Population				
2010	67,531			
2019	70,492			
2045	81,200			
Compound Growth Rate				
2010-2019	0.48%			
2019-2045	0.55%			

Planned Development within the Study Area

• No Planned Developments within the Study Area



on Pr

raffic Approac ting with

Traffic Growth

Using the FDOT Traffic Trends Analysis Tool

Growth Rate Determination

- 1.0% growth rate was estimated for study area
- Reasonable based on the County population and traffic growth

Introduction

Project Traffic Forecasting Approach to Forecasting without Models

Traffic Growth Trends

Using the FDOT Traffic Trends Analysis Tool

uiz

Develop 2043 AADT

	Description	FTO Station	2016 AAD1	2043 AADT with 1% CAGR
	I-75 South of I-10	290320	46,000	60,000
Mainline	I-75 North of I-10	290324	32,000	42,000
	I-10 West of I-75	370144	25,500	33,500
	I-10 East of I-75	290247	21,500	28,000
	I-75 NB to I-10 WB	290280	8,200	10,500
Demas	I-75 SB to I-10 EB	290281	5,700	7,500
Ramps	I-10 EB to I-75 SB	290291	7,700	10,000
	I-10 WB to I-75 NB	290293	5,000	6,500

Design Year 2043 Final AADT

• Apply 1.0% CAGR to Existing Year 2016 AADT

Future $AADT = Final AADT(1 + Growth Rate)^{\Delta Time}$

 $2043 AADT = 32,000(1+0.01)^{2043-2016}$

2043 AADT = 42,000 (rounded to nearest 500)

Introduction

Project Traffic

Approach to Forecastin without Models

Traffic Growth Trends

Using the FDOT Traffic Trends Analysis Tool

Jiz

Forecasting Without a Travel Demand Model

QUIZ

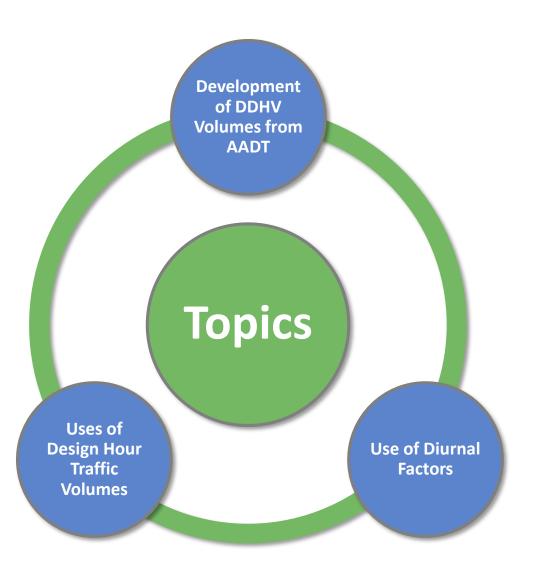
Project Traffic FORECASTING HANDBOOK 2019

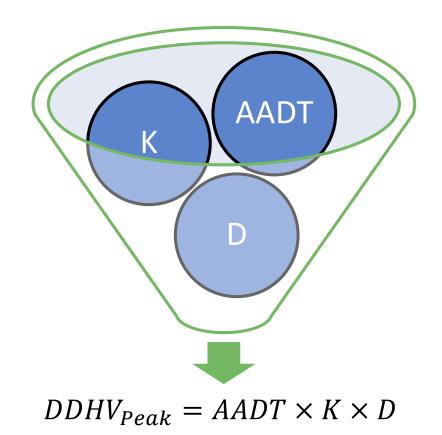
Directional Design Hour Volumes Project Traffic

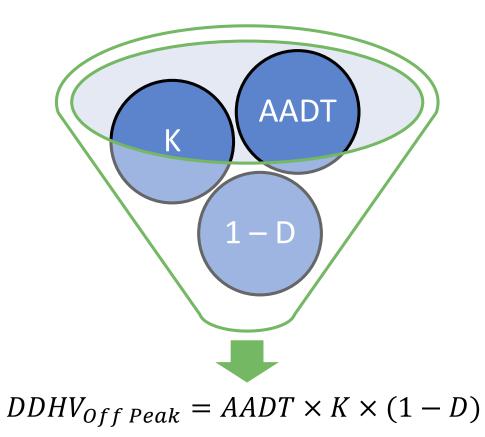
FORECASTING

HANDBOOK 2019

- Introduction
- Development of DDHV from AADT
- Use of Diurnal Factors
- Uses of Design Hour Traffic Volumes
- Quiz


Introduction


- Design and operational analysis requires hourly volumes in a peak hour in peak direction
- Volume corresponding to the peak hour is the Design Hour Volume (DHV)
 - $DHV = AADT \times K$

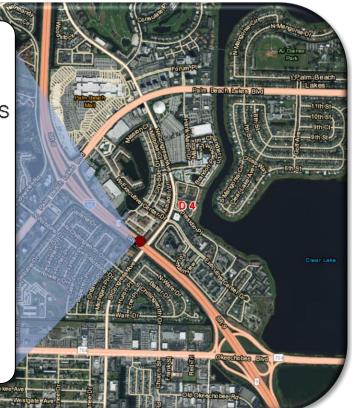

FDOT

Introduction

 Volume corresponding to the peak hour in the peak direction is the Directional Design Hour Volume (DDHV)

Development of DDHV from AADT

Use of Diurnal Fact


Uses of Design Hou Traffic Volumes

Quiz

• Develop DDHV from AADT Example

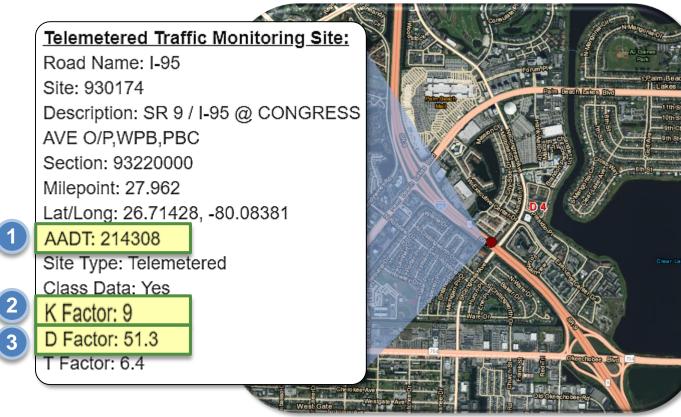
- Count Location
 - I-95 at Congress Avenue
- Determine
 - Peak Direction DDHV
 - Off-Peak Direction DDHV

Telemetered Traffic Monitoring Site: Road Name: I-95 Site: 930174 Description: SR 9 / I-95 @ CONGRESS AVE O/P,WPB,PBC Section: 93220000 Milepoint: 27.962 Lat/Long: 26.71428, -80.08381 AADT: 214308 Site Type: Telemetered Class Data: Yes K Factor: 9 D Factor: 51.3 T Factor: 6.4

Jses of Design Hou Traffic Volumes

• Develop DDHV from AADT Example

Steps to calculate DDHVs
 Determine AADT


AADT = 214,308

K Factor = 9.0%

D Factor = 51.3%

Development of DDHV from AADT

Use of Diurnal Factor

Jses of Design Hou Traffic Volumes

Quiz

• Develop DDHV from AADT Example

Steps to calculate DDHVs
 Calculate Peak Direction DDHV

 $DDHV_{Peak} = AADT \times K \times D$

 $DDHV_{Peak} = 214,308 \times 9.0\% \times 51.3\%$

 $DDHV_{Peak} = 9,895$

 $DDHV_{Peak} = 9,900 (round to nearest 100)$

Telemetered Traffic Monitoring Site: Road Name: I-95 Site: 930174 Description: SR 9 / I-95 @ CONGRESS AVE O/P,WPB,PBC Section: 93220000 Milepoint: 27.962 Lat/Long: 26.71428, -80.08381 AADT: 214308 Site Type: Telemetered Class Data: Yes K Factor: 9 D Factor: 51.3 T Factor: 6.4

Jses of Design Hou Traffic Volumes


- Develop DDHV from AADT Example
 - Steps to calculate DDHVs
 Calculate Off Peak Direction DDHV

 $DDHV_{Off Peak} = AADT \times K \times (1 - D)$

 $DDHV_{Off Peak} = 214,308 \times 9.0\% \times (1 - 51.3\%)$

 $DDHV_{Off Peak} = 9,393$

 $DDHV_{Off Peak} = 9,400 (round to nearest 100)$

Development of DDHV from AADT

Use of Diurnal Fac

Jses of Design Hour Traffic Volumes

Quiz

- Develop DDHV from PSWADT Example
 - Model
 - CFRPM
 - Base Year 2015
 - Horizon Year 2040
 - Location
 - Urban Arterial in Orlando (Orange County)
 - Horizon Year 2040 PSWADT
 - 78,500
 - Determine
 - Peak Direction DDHV
 - Off-Peak Direction DDHV

ses of Design Hour Traffic Volumes MEARSTAXI

• Develop DDHV from PSWADT Example

 Steps to calculate DDHVs 	
Optermine AADT	

 $AADT = PSWADT \times MOCF$

PSWADT = 78,500

MOCF = 0.98

 $AADT = 78,500 \times 0.98$

AADT = 76,930

AADT = 77,000 (round to nearest 500)

		FACTOR CATE RANGE COUNTY		- REPORT TYPE: ALL
WEEK	DATE		SF	MOCF: 0.98 PSCF
1 2 3 4 5 6	01/07/2018 01/14/2018 01/21/2018	- 01/06/201 - 01/13/201 - 01/20/201 - 01/27/201 - 02/03/201	8 1.04 8 1.05 8 1.03	1.04 1.06 1.07 1.05 1.04
Ğ.		- 02/10/201		1.02
* 7		- 02/17/201		1.01
* 8 * 9	02/18/2018	- 02/24/201	8 0.98	1.00
* 9	02/25/2018	- 03/03/201	8 0.98	1.00
*10	03/04/2018	- 03/10/201	8 0.98	1.00
*11	03/11/2018	- 03/17/201	8 0.98	1.00
	03/18/2018			1.00
*13	03/25/2018	- 03/31/201	8 0.98	1.00
*14	04/01/2018	- 04/07/201	8 0.98	1.00
*15	04/08/2018	- 04/14/201	8 0.98	1.00
*16		- 04/21/201		1.00
*17	04/22/2018	- 04/28/201	8 0.99	1.01
*18	04/29/2018	- 05/05/201	8 1.00	1.02
*19	05/06/2018	- 05/12/201	8 1.00	1.02
20	05/13/2018	- 05/19/201	8 1.01	1.03
21		- 05/26/201		1.03
22		- 06/02/201		1.03
23	06/03/2018			1.03
24		- 06/16/201		1.03

ction

Development of Use of I

Uses of Design Hou Traffic Volumes

• Develop DDHV from PSWADT Example

- Steps to calculate DDHVs
 - 2 Determine K Factor

K Factor	= 9.0%
----------	--------

Area (Population)	Facility Type	Standard K Factor (% AADT)*	Representative Time Period	
Large Urbanized Areas with Core Freeways	Freeways	8.0 - 9.0 ***	Typical weekday peak period or hour	
(1,000,000+)	Arterials & Highways	9.0 ***	Typical weekday peak hour	
Other Urbanized Areas	Freeways	9.0 ***	Typical weekday peak hour	
(50,000+)	Arterials & Highways	5.0	турісаї меекцаў реак поці	
Transitioning to Urbanized Areas	Freeways	9.0	Typical weekday peak hour	
(Uncertain)	Arterials & Highways	5.0	Typical weekday peak nour	
Urban	Freeways	10.5	100th highest hour of the year	
(5,000-50,000)	Arterials & Highways	9.0**	Typical weekday peak hour	
	Freeways	10.5		
Rural (<5,000)	Arterials	9.5**	100th highest hour of the year	
	Highways	9.5		

Development of DDHV from AADT

Use of Diurnal Fac

lses of Design Hour Traffic Volumes

Quiz

• Develop DDHV from PSWADT Example

- Steps to calculate DDHVs
 - 3 Determine D Factor

Factor = 53.2%		2018	VOLU	ME FAC	CTOR (CATEGO	ORY SU	JMMARY	(REP(ORT -	REPOR	AT TYP	PE: AL	L									
		CATEG	ORY:	7500	- OR	ANGE (COUNTY	WIDE															
	COSITE DI	r JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	SUN	MON	TUE	WED	THU	FRI	SAT	STD "K"	MEDIAN "D"	AAD
	750104 E 750104 W 750104 B	1.06	0.98	0.97	0.97	1.01	1.01	1.01	0.98	1.00 1.00 1.00	0.99	0.99	1.04	1.11 1.07 1.09	1.02	1.02	1.00	1.00	0.92	0.99	9.5	52.4	2887
	750154 N 750154 S 750154 B	1.03	1.00	0.98	0.99	1.00	0.99	1.00	0.99	1.01 1.02 1.02	1.01	0.99	1.00	1.19 1.24 1.22	0.98	0.97	0.96	0.95	0.89	1.08	9.0	53.7	6092
	750175 N 750175 S 750175 B	1.10	1.03	1.03	1.00	1.02	1.00	1.01	0.97	1.00 0.97 0.99	0.94	0.96	0.98	1.47 1.47 1.47	0.96	0.91	0.90	0.90	0.88	1.22	9.0	53.9	370
	770102 N 770102 S 770102 B	1.03	0.95	0.95	0.96	1.00	1.02	1.05	0.99	1.01 1.01 1.01	0.99	1.03	1.04	1.31 1.33 1.32	0.99	0.96	0.95	0.94	0.87	1.07	9.0	52.7	3695
															=====	====							
	CATEGORY:	1.05	0.99	0.98	0.98	1.01	1.01	1.02	0.99	1.01	0.99	1.00	1.02	1.28	0.99	0.97	0.96	0.95	0.89	1.09	9.1	53.2	3

Development of DDHV from AADT

Use of Diurnal Factors

ses of Design Hour Traffic Volumes

Quiz

- Develop DDHV from PSWADT Example
 - Steps to calculate DDHVs
 Calculate Peak Direction DDHV

 $DDHV_{Peak} = AADT \times K \times D$

Development of DDHV from AADT

 $DDHV_{Peak} = 77,000 \times 9.0\% \times 53.2\%$

 $DDHV_{Peak} = 3,687$

FDOT

 $DDHV_{Peak} = 3,700 (round to nearest 100)$

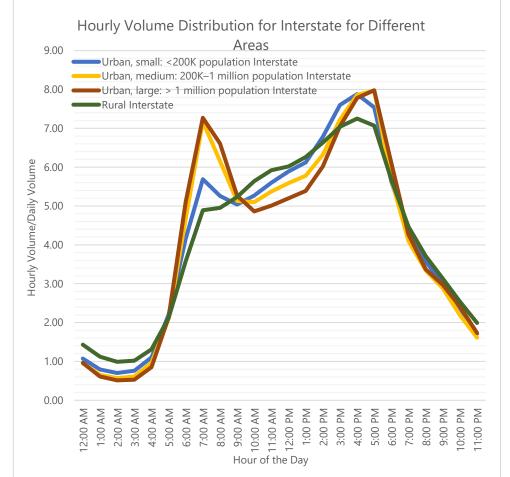
- Develop DDHV from PSWADT Example
 - Steps to calculate DDHVs
 Calculate Off Peak Direction DDHV

 $DDHV_{Off Peak} = AADT \times K \times (1 - D)$

 $DDHV_{Off Peak} = 77,000 \times 9.0\% \times (1 - 53.2\%)$

 $DDHV_{Off Peak} = 3,243$

Development of DDHV from AADT


FDOT

 $DDHV_{Off Peak} = 3,200 (round to nearest 100)$

Use of Diurnal Factors

- Diurnal Factors are hourly volume distribution factors for an average weekday defined by area type, facility type and area size
 - Diurnal Factors are used when traffic volumes for multiple peak hours for analysis are needed
- Diurnal distribution factors available from <u>NCHRP Report 765</u>

Source: NCHRP Report 765: Analytical Travel Forecasting Approaches for Project-Level Planning and Design, Ch.8.

ion De

Use of Diurnal Factors

Uses of Design H Traffic Volume

Quiz

Use of Diurnal Factors

- Example: Develop the 7:00 AM Peak Hour Volumes with Factors from <u>NCHRP Report</u> <u>765</u>
 - Location
 - I-75 through Sarasota
 - AADT
 - 142,000

Hour	Urban, s	small: Pop	o <200K	Urban, n	nedium: P	op 200K–'	1 million	Urba	n, large: F	op > 1 mi	llion	Rural Area			
Begin	Interstate	Arterial	Collector	Interstate	Arterial CBD	Arterial Others	Collector	Interstate	Arterial CBD	Arterial Others	Collector	Interstate	Arterial	Collecto	
12:00 AM	1.07	0.59	0.47	0.95	0.81	0.71	0.61	0.96	1.22	0.78	0.59	1.43	0.72	0.57	
1:00 AM	0.79	0.39	0.29	0.65	0.47	0.46	0.36	0.61	0.75	0.48	0.38	1.12	0.49	0.36	
2:00 AM	0.70	0.30	0.23	0.57	0.41	0.40	0.31	0.51	0.58	0.37	0.30	0.99	0.43	0.31	
3:00 AM	0.76	0.33	0.26	0.61	0.31	0.46	0.34	0.53	0.57	0.37	0.33	1.02	0.51	0.38	
4:00 AM	1.10	0.58	0.30	0.96	0.43	0.77	0.60	0.85	0.79	0.61	0.59	1.31	0.93	0.84	
5:00 AM	2.20	1.44	1.16	2.10	0.98	1.80	1.32	2.13	1.74	1.70	1.16	2.12	2.28	2.19	
6:00 AM	4.16	3.21	2.93	4.67	2.67	4.05	3.63	5.11	4.23	4.17	2.72	3.58	4.54	4.36	
7:00 AM	5.69	6.09	6.27	7.17	5.90	6.40	6.70	7.27	6.31	6.58	5.92	4.89	6.63	6.55	
8:00 AM	5.26	5.53	5.75	6.16	5.79	5.75	6.60	6.61	6.24	6.08	6.05	4.95	5.55	5.58	
9:00 AM	5.04	5.12	4.95	5.13	4.96	5.18	5.60	5.27	5.43	5.04	5.82	5.23	5.24	5.25	
10:00 AM	5.27	5.55	5.24	5.10	5.19	5.36	5.49	4.86	5.18	4.96	5.78	5.64	5.41	5.44	
11:00 AM	5.60	6.31	6.01	5.37	6.22	5.76	5.92	5.01	5.40	5.39	6.55	5.92	5.67	5.71	
12:00 PM	5.89	6.74	6.66	5.59	7.10	6.11	6.33	5.20	5.72	5.81	7.08	6.02	5.91	6.05	
1:00 PM	6.12	6.72	6.72	5.78	6.95	6.25	6.40	5.39	5.77	5.93	6.95	6.26	6.13	6.24	
2:00 PM	6.78	7.07	7.63	6.32	6.75	6.70	6.74	6.02	6.07	6.31	7.20	6.63	6.68	6.78	
3:00 PM	7.60	8.29	8.65	7.22	7.18	7.46	7.44	7.05	6.66	7.05	7.97	7.04	7.53	7.63	
4:00 PM	7.88	8.30	9.22	7.86	7.91	8.05	7.82	7.78	7.07	7.85	7.94	7.25	8.02	8.15	
5:00 PM	7.54	7.91	8.45	7.97	8.27	8.14	8.18	7.98	7.45	8.33	7.60	7.07	7.98	8.16	
6:00 PM	5.63	5.96	5.96	5.69	6.06	6.10	6.05	6.11	6.12	6.52	5.66	5.68	5.95	6.17	
7:00 PM	4.32	4.49	4.49	4.10	4.72	4.42	4.33	4.27	4.72	4.80	4.20	4.47	4.21	4.37	
8:00 PM	3.57	3.50	3.38	3.34	3.89	3.48	3.42	3.37	3.77	3.88	3.29	3.71	3.30	3.41	
9:00 PM	2.99	2.63	2.46	2.88	3.18	2.82	2.71	2.97	3.30	3.17	2.66	3.13	2.62	2.59	
10:00 PM	2.31	1.77	1.54	2.19	2.27	2.00	1.89	2.41	2.77	2.28	1.97	2.54	1.94	1.77	
11:00 PM	1.71	1.16	0.98	1.61	1.57	1.36	1.24	1.73	2.14	1.53	1.28	1.99	1.34	1.14	

Source: NCHRP Report 765: Analytical Travel Forecasting Approaches for Project-Level Planning and Design, Chapter 8.

oduction

rom AADT

Use of Diurnal Factors

Jses of Design Hour Traffic Volumes

Use of Diurnal Factors

 Example: Develop the 7:00 AM Peak Hour Volume with Factors from NCHRP Report 765

Determine Diurnal Factor

Diurnal Factor = 7.27%

 $Volume_{7:00AM} = AADT \times Diurnal Factor$

 $Volume_{7:00AM} = 142,000 \times 7.27\%$

 $Volume_{7:00AM} = 10,500$

Hour	Urban, small: Pop <200K			Urban, medium: Pop 200K–1 million				Urba	n, large: F	op > 1 mi	Rural Area			
Begin	Interstate	Arterial	Collector	Interstate	Arterial CBD	Arterial Others	Collector	Interstate	Arterial CBD	Arterial Others	Collector	Interstate	Arterial	Collector
12:00 AM	1.07	0.59	0.47	0.95	0.81	0.71	0.61	0.96	1.22	0.78	0.59	1.43	0.72	0.57
1:00 AM	0.79	0.39	0.29	0.65	0.47	0.46	0.36	0.61	0.75	0.48	0.38	1.12	0.49	0.36
2:00 AM	0.70	0.30	0.23	0.57	0.41	0.40	0.31	0.51	0.58	0.37	0.30	0.99	0.43	0.31
3:00 AM	0.76	0.33	0.26	0.61	0.31	0.46	0.34	0.53	0.57	0.37	0.33	1.02	0.51	0.38
4:00 AM	1.10	0.58	0.30	0.96	0.43	0.77	0.60	0.85	0.79	0.61	0.59	1.31	0.93	0.84
5:00 AM	2.20	1.44	1.16	2.10	0.98	1.80	1.32	2.13	1.74	1.70	1.16	2.12	2.28	2.19
6:00 AM	4.16	3.21	2.93	4.67	2.67	4.05	3 **	E 44	1.2.3	4.17	2.72	3.58	4.54	4.36
7:00 AM	5.69	6.09	6.27	7.17	5.90	6.40	6	7.27	(1)	6.58	5.92	4.89	6.63	6.55
8:00 AM	5.26	5.53	5.75	6.16	5.79	5.75	6	0.01		6.08	6.05	4.95	5.55	5.58
9:00 AM	5.04	5.12	4.95	5.13	4.96	5.18	5.60	5.27	5.43	5.04	5.82	5.23	5.24	5.25
10:00 AM	5.27	5.55	5.24	5.10	5.19	5.36	5.49	4.86	5.18	4.96	5.78	5.64	5.41	5.44
11:00 AM	5.60	6.31	6.01	5.37	6.22	5.76	5.92	5.01	5.40	5.39	6.55	5.92	5.67	5.71
12:00 PM	5.89	6.74	6.66	5.59	7.10	6.11	6.33	5.20	5.72	5.81	7.08	6.02	5.91	6.05
1:00 PM	6.12	6.72	6.72	5.78	6.95	6.25	6.40	5.39	5.77	5.93	6.95	6.26	6.13	6.24
2:00 PM	6.78	7.07	7.63	6.32	6.75	6.70	6.74	6.02	6.07	6.31	7.20	6.63	6.68	6.78
3:00 PM	7.60	8.29	8.65	7.22	7.18	7.46	7.44	7.05	6.66	7.05	7.97	7.04	7.53	7.63
4:00 PM	7.88	8.30	9.22	7.86	7.91	8.05	7.82	7.78	7.07	7.85	7.94	7.25	8.02	8.15
5:00 PM	7.54	7.91	8.45	7.97	8.27	8.14	8.18	7.98	7.45	8.33	7.60	7.07	7.98	8.16
6:00 PM	5.63	5.96	5.96	5.69	6.06	6.10	6.05	6.11	6.12	6.52	5.66	5.68	5.95	6.17
7:00 PM	4.32	4.49	4.49	4.10	4.72	4.42	4.33	4.27	4.72	4.80	4.20	4.47	4.21	4.37
8:00 PM	3.57	3.50	3.38	3.34	3.89	3.48	3.42	3.37	3.77	3.88	3.29	3.71	3.30	3.41
9:00 PM	2.99	2.63	2.46	2.88	3.18	2.82	2.71	2.97	3.30	3.17	2.66	3.13	2.62	2.59
10:00 PM	2.31	1.77	1.54	2.19	2.27	2.00	1.89	2.41	2.77	2.28	1.97	2.54	1.94	1.77
11:00 PM	1.71	1.16	0.98	1.61	1.57	1.36	1.24	1.73	2.14	1.53	1.28	1.99	1.34	1.14

Source: NCHRP Report 765: Analytical Travel Forecasting Approaches for Project-Level Planning and Design, Chapter 8.

oduction

Use of Diurnal Factors

Jses of Design Hour Traffic Volumes

Quiz

Uses of Design Hour Traffic Volumes

Determine Lane Requirements

Conduct Capacity Analysis

Conduct Level of Service Analysis

Basis for Developing Turning Movement Projections

tion Dev

from AADT

nal Factors

Uses of Design Hour Traffic Volumes

Directional Design Hour Volumes

QUIZ

Project Traffic FORECASTING HANDBOOK 2019

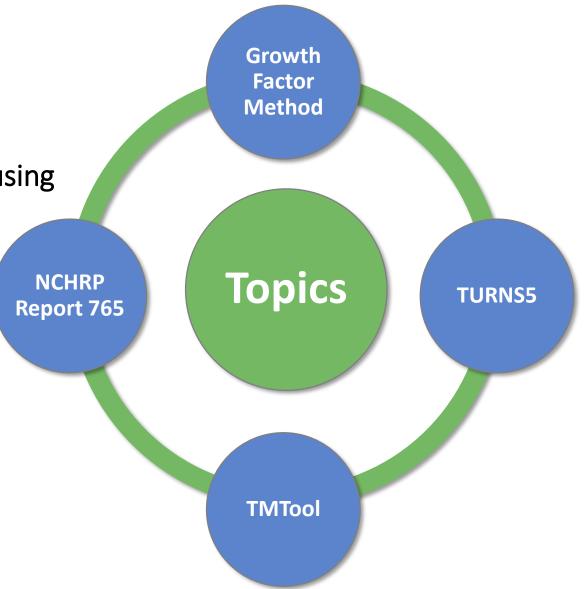
- Introduction
- Growth Factor Method
- TURNS5
- TMTool
- NCHRP Report 765
- Quiz

Estimating Intersection Turning Movements

Project Traffic

FORECASTING

HANDBOOK 2019



Introduction

- Turning Movement Volumes are developed using
 - FSUTMS Travel Demand Forecasting Models
 - Other Common Methods
 - Growth Factor Method
 - TURNS5
 - TMTool
 - NCHRP Report 765
- Turning Movement Volumes required for
 - Intersection Design

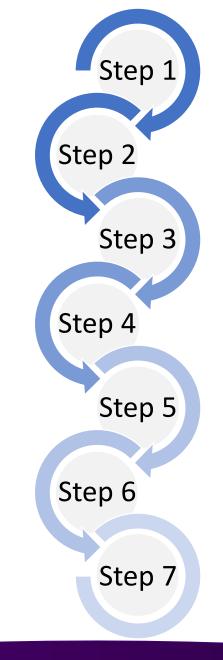
Introduction

- Traffic Operational Analyses
- Site Impact Evaluations

Growth Factor Method

- The Growth Factor Method can be used when
 - Existing turning movement counts are available
 - No major changes in land use patterns are expected
- Most commonly used method

Design Year 🔶 Opening Year 🗲 Existing



Growth Factor Method

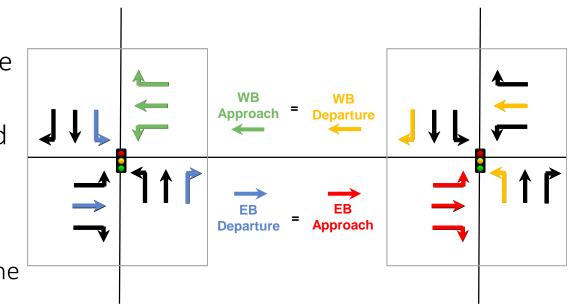
Year

Growth Factor Method

- The Growth Factor Method Steps
- 1 Balance Existing Year Turning Movement Volumes
- 2 Calculate Existing Year Turning Movement Percentages
- 3 Hold Ramp Volumes from DDHV Development Constant
- Oistribute Ramp Volumes based on the Existing Year Turning Movement Percentages
- 5 Apply Growth Rate to the Arterial Approach Volumes
- 6 Calculate Arterial Through and Turning Volumes
- 7 Refine and Balance Arterial Volumes

Growth Factor Method

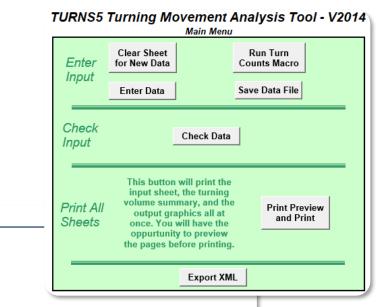
TURN


Report 7

Growth Factor Method

• Corridor Balancing

- Link volumes between two adjacent intersections along a corridor should balance
- The degree of accuracy that can be obtained from "intersection balancing" methods depends on
 - Change in land use
 - Travel pattern expected to occur between the existing and future design years


Growth Factor Method

Qui

- Current Version
 - turns5---v2014-final.xlsm
- TURNS5 develops turning movements with two methods
 - Interpolation
 - Growth Rate Application

• Limitations

- One peak period per application
- Allows input only by direction not by approach
- Does not allow direct input of AADT developed by methodologies other than growth factors

Project Traffic Forecasting Guidance

Resources

- Project Traffic Forecasting Handbook 2019
- Project Traffic Forecasting Procedure (525-030-120-h)
- TURNS5 Turning Movement Analysis Tool Documentation (2014)
- Florida Specific Traffic Data Inputs to the Mechanistic-Empirical Pavement Design Guide (MEPDG)

Project Traffic Forecasting Tools

- Turns5 Turning Movement Analysis Tool (2014)
- Equivalent Single Axle Load Analysis Tool (Version 2)
- Traffic Trends Analysis Tool
- District 4's Turning Movement Tool (TM Tool)

Project Traffic Forecasting Training

Project Traffic Forecasting Training

GIOW

```
Quiz
```

 Open Excel Spreadsheet (turns5--v2014-final.xlsm)

TURNS5	Turning Move	ement Analy Main Menu	sis Too	I - V2014	
Enter	Clear Sheet for New Data		n Turn ts Macro		
Input	Enter Data				
Check Input	CI	heck Data			
Print All Sheets	This button wil input sheet, th volume summa output graph once. You will oppurtunity to the pages befor	e turning ry, and the ics all at have the preview	Print Previ and Prin		
		Export XML			ļ

r	Nort <u>h</u> /South Road Name	East/West Road Name	
	Project	<u>A</u> nalyst PIN	
	<u>C</u> ounty	· ·	
	□ Is the mainline oriented North/South? □ □ Yes □ No □ Do you have FSUTMS model year traffic? □	 Is this a 4 or a 3 way intersection? 4 way intersection 3 way intersection 	
	C Yes No		
	Existing Year2020Opening Year2030Mid-Year2040		
	<u>D</u> esign Year 2050 ▼	D Facto	ors
		Mainline Westbound (WB) 0.5	
	K Factors	Mainline Eastbound (EB) 0.5	
	Mainline0.07Side Street0.07	Side Street Northbound (NB)0.5Side Street Southbound (SB)0.5	_
	<u>о</u> к	<u>C</u> ancel	

tion

Report

Quiz

- Fill Out Data Entry Screen
 - 1 Enter Roadway Names
 - 2 Enter Project Name/Description
 - 3 Enter Name of Analyst
 - 4 Enter PIN Number
 - 5 Enter County Name
 - 6 Select N/S Orientation on Mainline
 - Select Type of Intersection

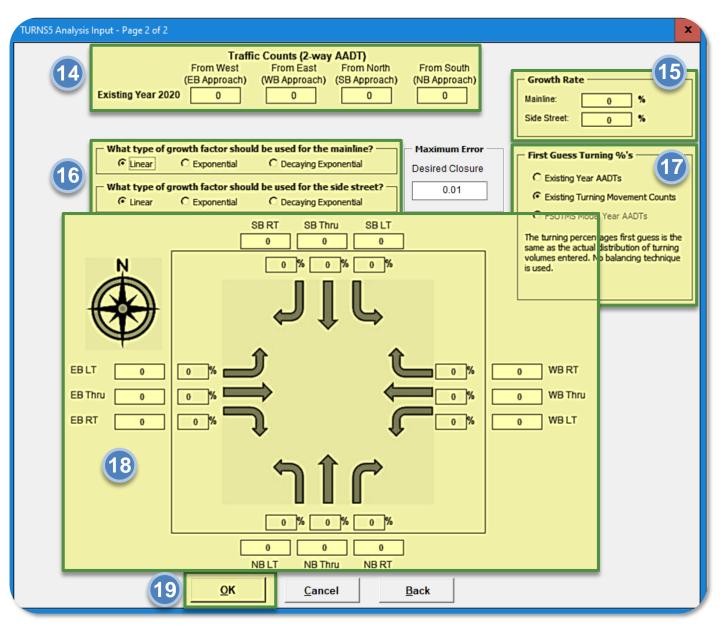
TURNS5 Analysis Input - Page 1 of 2	×
North/South Road Name	East/West Road Name
Project County Is the mainline oriented North/South? O Yes No Do you have FSUTMS model year traffic? O Yes O Yes	Analyst PIN 3 4 Is this a 4 or a 3 way intersection? • 4 way intersection • 3 way intersection • 7
Image: Red Part of the second state Image: Red Part of the second state Image: Red Part of the second state Image: Red Part of the second state Image: Red Part of the second state Image: Red Part of the second state Image: Red Part of the second state Image: Red Part of the second state Image: Red Part of the second state Image: Red Part of the second state Image: Red Part of the second state Image: Red Part of the second state Image: Red Part of the second state Image: Red Part of the second state Image: Red Part of the second state Image: Red Part of the second state Image: Red Part of the second state Image: Red Part of the second state Image: Red Part of the second state Image: Red Part of the second state Image: Red Part of the second state Image: Red Part of the second state Image: Red Part of the second state Image: Red Part of the second state Image: Red Part of the second state Image: Red Part of the second state Image: Red Part of the second state Image: Red Part of the second state Image: Red Part of the second state Image: Red Part of the second state Image: Red Part of the second state Image: Red Part of the second state Image: Red Part of the second state Image: Red Part of the second state Image: Red Part of the second state Image: Red Part of the second state Image: Red Part of the second state Image: Red Part of the second state	D Factors
	Mainline Westbound (WB) 0.5
K Factors	Mainline Eastbound (EB)
Mainline 0.07 Side Street 0.07	Side Street Northbound (NB)0.5Side Street Southbound (SB)0.5
<u>о</u> к	<u>C</u> ancel

Growth F

Renc

Qui

- Fill Out Data Entry Screen
 - 8 If 3-Way Intersection, Select the 3 Approaches at the Intersection
 - Select if FSUTMS Model Traffic is Available 10 Enter Years of Analysis **Enter K Factor Values**
 - 12 Enter D Factor Values
 - Click "OK"


	TURNS5 A	nalysis Input - Page 1 of 2	X					
	North	South Road Name	East/West Road Name					
1								
2	Proje	ct	Analyst PIN					
5	<u>C</u> oun	ly	3 4					
6		e mainline oriented North/South?) Yes	Is this a 4 or a 3 way intersection?					
	(No No	3 way intersection					
9	0	ou have FSUTMS model year traffic? - `Yes `No	Which 3 approaches exist in the intersection?					
		Existing Year 2020 - Opening Year 2030 -	Southbound 8					
	10	<u>M</u> id-Year 2040 ▼	Westbound					
		Design Year 2050 💌	D Factors					
			Mainline Westbound (WB) 0.5					
		K Factors	Mainline Eastbound (EB) 0.5					
	11	Mainline 0.07	Side Street Northbound (NB) 0,5					
	Ŭ	Side Street 0.07	Side Street Southbound (SB) 0.5					
		13к	<u>C</u> ancel					

TURNS5

- Fill Out Data Entry Screen
- 14 Enter Existing Year AADTs by Approach
- 15 Enter Annual Growth Rate as a Percentage
- 16 Select Growth Rate Factor Type
- 17 Select First Guess Turning % **Based On**
 - It is recommended Existing Turning Movement Counts be Used
- **18** Enter Existing Turning **Movement Counts**

Click "OK"

FDO

TURNS5

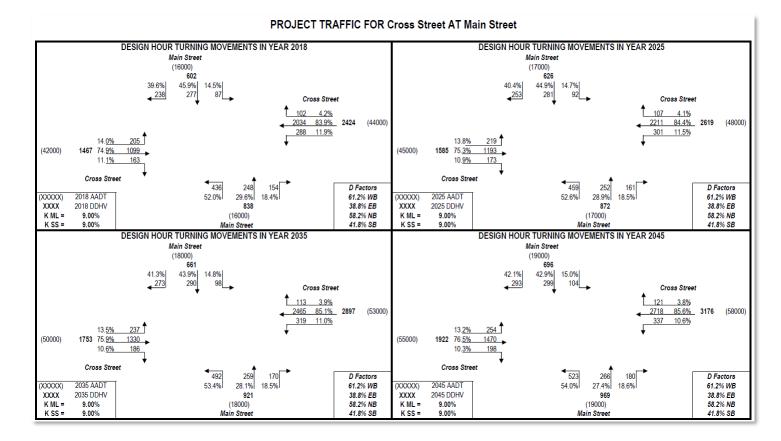
TURNS5 INITIAL TURNING VOLUME SUMMARY

High way:	Cross Street	County:	Polk	
Intersection:	Main Street			
Project:	Project	Analyst:	John Doe	
	-	Date:	25-Feb-20	

	2018	2	2018	2	025		2035	2045		
Approach-To-	Initial	Final	Calculated	Final	Calculated	Final	Calculated	Final	Calculated	
Approach	Estimate	Estimate	Volume	Estimate	Volume	Estimate	Volume	Estimate	Volume	
West-To-North (LT)	0.120	0.140	205	0.138	219	0.135	237	0.132	254	
West-To-East (Thru)	0.825	0.749	1099	0.753	1193	0.759	1330	0.765	1470	
West-To-South (RT)	0.055	0.111	163	0.109	173	0.106	186	0.103	198	
Total Flow From W	est:		1467		1585		1753	1922		
East-To-South (LT)	0.235	0.119	288	0.115	301	0.110	319	0.106	337	
East-To-West (Thru)	0.621	0.839	2034	0.844	2211	0.851	2465	0.856	2718	
East-To-North (RT)	0.144	0.042	102	0.041	107	0.039	113	0.038	121	
Total Flow From Ea	ist:		2424		2619		2897		3176	
North-To-East (LT)	0.348	0.145	87	0.147	92	0.148	98	0.150	104	
North-To-South (Thru)	0.493	0.459	277	0.449	281	0.439	290	0.429	299	
North-To-West (RT)	0.159	0.396	238	0.404	253	0.413	273	0.421	293	
Total Flow From No	orth:		602		626		661		696	
South-To-West (LT)	0.174	0.520	436	0.526	459	0.534	492	0.540	523	
South-To-North (Thru)	0.458	0.296	248	0.289	252	0.281	259	0.274	266	
South-To-East (RT)	0.368	0.184	154	0.185	161	0.185	170	0.186	180	
Total Flow From So	outh:		838		872		921		969	

Output Screens

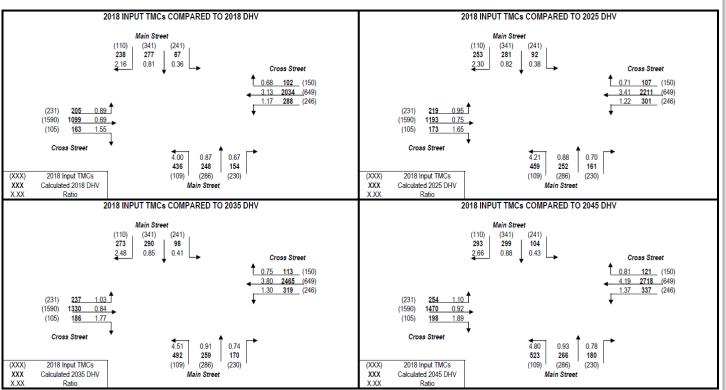
• Initial Turning Volume Summary



uction

Report 7

Qu

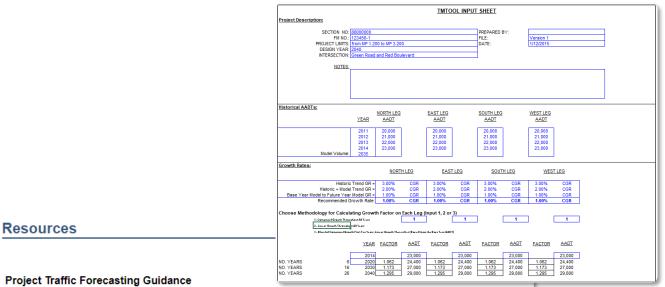

- Output Screens
 - Turning Movement Counts for All Analysis Years

TURNS5

- Output Screens
 - Comparison Between existing and Future Year Turning **Movement Counts**

PROJECT TRAFFIC FOR Cross Street AT Main Street

FDC


TURNS5

TMTool

- Current Version
 - <u>district-4-tmtool-v2.xlsm</u>
- TMTool developed by District 4
- Required Data
 - Existing AADTs
 - Future AADTs or Growth Rate
 - Existing Turning Movement Counts
- Estimates future turning movement volumes for multiple periods at the same time
- Used to develop turning movements for

TMTool

- Existing Intersections
- Planned Intersections

- roject Traffic Forecasting Guidance
- Project Traffic Forecasting Handbook 2019
- Project Traffic Forecasting Procedure (525-030-120-h)
- TURNS5 Turning Movement Analysis Tool Documentation (2014)
- Florida Specific Traffic Data Inputs to the Mechanistic-Empirical Pavement Design Guide (MEPDG)

Project Traffic Forecasting Tools

- Turns5 Turning Movement Analysis Tool (2014)
- Equivalent Single Axle Load Analysis Tool (Version 2)
- Traffic Trends Analysis Tool
- District 4's Turning Movement Tool (TM Tool)

Project Traffic Forecasting Training

Project Traffic Forecasting Training

TMTool

- Open Excel Spreadsheet (district-4-tmtool-v2.xlsm)
 - Blue Text = Manual Input
 - Black Text = Calculation

				TMTO	OL INPUT	SHEET					
Project Description:											
SECTION NO:	38000000					PREPARED E	BY:				
FM NO.:						FILE:		Version 1			
PROJECT LIMITS:	from MP 1.20	0 to MP 3.20	0			DATE:		1/12/2015			
DESIGN YEAR:											
INTERSECTION:	Green Road	and Red Bou	levard								
NOTES:											
L											
listorical AADTs:											
		NORTH LEG		EAST LEG		SOUTH LEG		WEST LEG			
	YEAR	AADT		AADT		AADT		AADT			
	2011	20,000		20,000		20,000	1	20,000			
	2012	21,000		21,000		21,000		21,000			
	2013	22,000		22,000		22,000		22,000			
	2014	23,000		23,000		23,000		23,000			
Model Volume:	2035			· · · ·		· ·		· · ·			
Growth Rates:											
		NORT	H LEG	EAST	T LEG	SOUT	H LEG	WEST	T LEG		
Historic	Trend GR =	3.00%	CGR	3.00%	CGR	3.00%	CGR	3.00%	CGR	1	
Historic + Model		2.00%	CGR	2.00%	CGR	2.00%	CGR	2.00%	CGR		
Base Year Model to Future Year		1.00%	CGR	1.00%	CGR	1.00%	CGR	1.00%	CGR		
Recommended Gr	owth Rate:	1.00%	CGR	1.00%	CGR	1.00%	CGR	1.00%	CGR]	
Choose Methodology for Calcula	ting Growt	Eactor on	Fach Leg (Input 1.2 or	3)						
1-Compound Growth Throug	_		Lach Leg (mput 1, 2 01	3) 1	ו ן	1]	1	1	
2 - Linear Growth Throughout								-			
3 - Blond of Compound Grout	h First Ton Yoars, Li	ine ar Growth There	after (Bared Upor	n the Bare Year AAD1	n						
	VEAD	EACTOR	AADT	EACTOR	AADT	EACTOR	AADT	EACTOR	AADT		
	TEAR	FACTOR	AADT	FACTOR	AADT	FACTOR	AADT	FACTOR	AADT		
Г	2014	[23,000	ו ך	23,000	ו ן	23,000]	23,000]	
NO. YEARS 6	2020	1.062	24,400	1.062	24,400	1.062	24,400	1.062	24,400		
NO. YEARS 16	2030	1.173	27,000	1.173	27,000	1.173	27,000	1.173	27,000		
		1.295	29,800	1.295	29,800	1.295					

on

hod

TMTool

Nort 765

Qui

• Fill Out Data Entry Screen

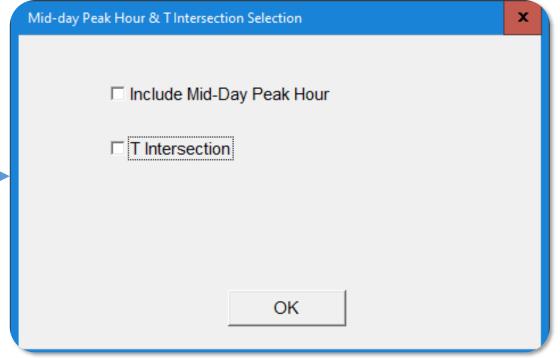
1 Enter Project Description

	TMTOOL INPU	T SHEET		
Project Description:				
PROJECT LIMITS: DESIGN YEAR:	123456-1 from MP 1.200 to MP 3.200 2040	PREPARED BY: FILE: DATE:	Version 1 1/12/2015	
INTERSECTION:	Green Road and Red Boulevard			
l				

uction

thod

TMTool



TMTool

• Fill Out Data Entry Screen

- 2 Click "Mid-Day Peak Hour & T Intersection Option"
 - Select if Applicable

Mid-Day Peak Hour & T Intersection Option

duction Grov

Repor

TMTool

• Fill Out Data Entry Screen

3 Enter AADTs

Historical AADTs:	YEAR	NORTH LEG AADT	EAST LEG AADT	SOUTH LEG AADT	WEST LEG AADT
	2011 2012 2013	20,000 21,000 22,000	20,000 21,000 22,000	20,000 21,000 22,000	20,000 21,000 22,000
Model Volume:	2014 2035	23,000	23,000	23,000	23,000

• Fill Out Data Entry Screen

4 Input Growth Rates

Growth Rates:	NODT		FACT	150				
	NORTI	<u>H LEG</u>	EAST	LEG	<u>SOUTI</u>	<u>I LEG</u>	WEST	LEG
Historic Trend GR =	3.00%	CGR	3.00%	CGR	3.00%	CGR	3.00%	CGR
Historic + Model Trend GR =	2.00%	CGR	2.00%	CGR	2.00%	CGR	2.00%	CGR
Base Year Model to Future Year Model GR =	1.00%	CGR	1.00%	CGR	1.00%	CGR	1.00%	CGR
Recommended Growth Rate:	1.00%	CGR	1.00%	CGR	1.00%	CGR	1.00%	CGR

uction

ethod

TMTool

Report 7

Quiz

TMTool

• Fill Out Data Entry Screen

- 5 Select Methodology for Calculating Growth Rate
 - 1 = Compound Annual Growth Rate
 - 2 = Linear Growth Rate
 - 3 = Blend of Compound and Linear

	2 = Linear Growth Throughout A	All Years									
	3 = Blend of Compound Growth	First Ten Yea	ars, Linear Growth	Thereafter (Bas	ed Upon the Base `	Year AADT)					
		YEAR	FACTOR	<u>AADT</u>	FACTOR	AADT	FACTOR	<u>AADT</u>	FACTOR	AADT	
		2014	Γ	23,000]	23,000] [23,000] [23,000	
O. YEARS	6	2020	1.062	24,400	1.062	24,400	1.062	24,400	1.062	24,400	
O. YEARS	16	2030	1.173	27,000	1.173	27,000	1.173	27,000	1.173	27,000	
O. YEARS	26	2040	1.295	29,800	1.295	29,800	1.295	29,800	1.295	29,800	
	Growth Factor		IDNI95	TMTool		HRP					

• Fill Out Data Entry Screen

6 Input Turning Movement Count Data & Estimate Future Turn Percentages

		FROM			FROM			FROM			FROM		
FURN STUDY	N	ORTH LEG	ì		EAST LEG			SOUTH LEG			WEST LEG		
	(S	outhbound)	((Westbound))		(Northbound))		(Eastbound)		
	RIGHT	THRU	LEFT	RIGHT	THRU	LEFT	RIGHT	THRU	LEFT	RIGHT	THRU	LEFT	TOTAL
A.M.	2-Way Pk Hr Vol:	1,280			1,280			1,280			1,280		
7/20/2019	20	600	20	20	600	20	20	600	20	20	600	20	2,560
% TURNS:	3%	94%	3%	3%	94%	3%	3%	94%	3%	3%	94%	3%	-
P.M.	2-Way Pk Hr Vol:	1,720			1,720			1,720			1,720		
7/20/2019	30	800	30	30	800	30	30	800	30	30	800	30	3,440
% TURNS:	3%	93%	3%	3%	93%	3%	3%	93%	3%	3%	93%	3%	-

ntroduction

Method

TMTool

Report

• Fill Out Data Entry Screen

6 Input Turning Movement Count Data

		FROM			FROM			FROM			FROM		
TURN STUDY	<u>N</u>	ORTH LEG	2		EAST LEG			SOUTH LEG	1		WEST LEG		
	(S	Southbound	1)	(Westbound)	((Northbound))		(Eastbound)		
	-		-						-				
	RIGHT	THRU	LEFT	RIGHT	THRU	LEFT	RIGHT	THRU	LEFT	RIGHT	THRU	LEFT	TOTAL
A.M.	2-Way Pk Hr Vol:	18,147			5,430			18,635			5,640		
7/20/2014	701	7,583	780	245	1,283	461	883	8,334	569	805	1,778	504	23,926
% TURNS:	8%	84%	9%	12%	65%	23%	9%	85%	6%	26%	58%	16%	
P.M.	2-Way Pk Hr Vol:	13,930			4,686			14,673			5,141		
7/20/2014	612	6,018	431	326	1,352	737	494	6,068	552	804	1,346	475	19,215
% TURNS:	9%	85%	6%	13%	56%	31%	7%	85%	8%	31%	51%	18%	

TMTool

Future turning Est. % Turns Calculated From Base Year AADTs & TMCs: SUGGESTED STARTING POINTS percentages EAST LEG SOUTH LEG WEST LEG NORTH LEG RIGHT THRU LEFT RIGHT THRU LEFT RIGHT THRU LEFT RIGHT THRU LEFT calculated from future A.M. 040 20 0.4.0 year AADT and 2020 6% 88% 6% 6% 88% 6% 6% 88% 6% 6% 88% 6% 2030 7% 86% 7% 7% 7% 86% 7% 7% 86% 7% 7% 86% existing turning 8% 8% 8% 2040 84% 8% 8% 84% 8% 84% 8% 84% 8% P.M. movement counts 87% 2020 6% 6% 6% 87% 6% 6% 87% 6% 6% 87% 6% 2030 7% 86% 7% 7% 7% 7% 7% 7% 86% 7% 86% 86% FDOT 2040 8% 83% 8% 8% 83% 8% 8% 83% 8% 8% 83% 8%

troduction

Mothod

FURNS5

Poport 7

Qui

• Fill Out Data Entry Screen

7 K Factors and D Factors are Calculated

Est. % T	urns Calcu	ulated From E	Base Year AA	DTs & TMC	s:									
SUCCE			<i>د</i>											
SUGGE	SIEDSIA		NORTH LEG			EAST LEG			SOUTH LEG			WEST LEG		
		RIGHT	THRU	LEFT	RIGHT	THRU	LEFT	RIGHT	THRU	LEFT	RIGHT	THRU	LEFT	
A.M.			11110			1111(0			11110			11110		
	2014	3%	94%	3%	3%	94%	3%	3%	94%	3%	3%	94%	3%	
	2020	6%	88%	6%	6%	88%	6%	6%	88%	6%	6%	88%	6%	
	2030	7%	86%	7%	7%	86%	7%	7%	86%	7%	7%	86%	7%	
	2000	8%	84%	8%	8%	84%	8%	8%	84%	8%	8%	84%	8%	
Р.М.	2040	0,0	0-470	070	370	0470	• 70	070	U -770	0 /0	070	U - 7 /0	0,0	
	2014	3%	93%	3%	3%	93%	3%	3%	93%	3%	3%	93%	3%	
	2020	6%	87%	6%	6%	87%	6%	6%	87%	6%	6%	87%	6%	
	2020	7%	86%	7%	7%	86%	7%	7%	86%	7%	7%	86%	7%	
	2030	8%	83%	8%	8%	83%	8%	8%	83%	8%	8%	83%	8%	
K & D E	ACTORS:	070	0070	070	070	0070	0 /0	070	0070	070	070	0070	0 /0	
		N	ORTH LEG			EAST LEG			SOUTH LEG		1	WEST LEG		
		AM		РМ	AM		PM	AM	000111220	PM	AM		PM	
	פר						1 101			1 101			1 101	
N I AG I	2014	5.6%		7.5%	5.6%		7.5%	5.6%		7.5%	5.6%		7.5%	
	2014	5.6%		7.5%	5.6%		7.5%	5.6%		7.5%	5.6%		7.5%	
	2020	5.6%		7.5%	5.6%		7.5%	5.6%		7.5%	5.6%		7.5%	
	2030	5.6%		7.5%	5.6%		7.5%	5.6%		7.5%	5.6%		7.5%	
	-	5.0 %		7.570	5.0 %		7.370	5.0 %		7.576	5.0 %		7.570	
DFACIO	2014	50.0%		50.0%	50.0%		50.0%	50.0%		50.0%	50.0%		50.0%	
	2014	50.0%		50.0%	50.0%		50.0%	50.0%		50.0%	50.0%		50.0%	
	2020	50.0% 50.0%		50.0%	50.0%		50.0%	50.0%		50.0% 50.0%	50.0%		50.0% 50.0%	
	1													
	2040	50.0%		50.0%	50.0%		50.0%	50.0%		50.0%	50.0%		50.0%	

tion

TMTool

Qu

- Output Screens
 - Future AADT Estimates

		I	MTOOL "TUR	NS" REPO	DRT						
DESIGN HOUR TURNS CALCULATIONS											
SECTION NO: 88000000 FM NO.: 123456-1 PROJECT LIMITS: from MP 1.200 to MP 3.200 DESIGN YEAR: 2040 INTERSECTION: Green Road and Red Boule PREPARED BY: FILE: Version 1	vard	DATE: NOTES:	1/12/2015								
ESTIMATED TWO-WAY 24 HOUR AADT FOR EACH	HLEG OF THE INT	ERSECTION	:								
YEAR 24 HR EST. AADT 2014 24 HR EST. AADT 2020 24 HR EST. AADT 2030 24 HR EST. AADT 2030 24 HR EST. AADT 2040	<u>NORTH</u> 23,0 24,4 27,0 29,8	00 00 00		EAST LEC 23,000 24,400 27,000 29,800	2	:	SOUTH LE 23,000 24,400 27,000 29,800	<u>G</u>		WEST LEC 23,000 24,400 27,000 29,800	2
Percent Turns Calculated From Base Year AAD	Ts:										
JKTURNS	FRC NORT	M <u>H LEG</u>		FROM EAST LEC	3		FROM SOUTH L	EG		FROM WEST LE	G
2014 2-WAY ADT	23,00 <u>RIGHT</u> <u>THR</u> 23,000 23,00 33% 33%	<u>U</u> <u>LEFT</u> 00 23,000	<u>RIGHT</u> 23,000 33%	23,000 <u>THRU</u> 23,000 33%	LEFT 23,000 33%	<u>RIGHT</u> 23,000 33%	23,000 <u>THRU</u> 23,000 33%	LEFT 23,000 33%	<u>RIGHT</u> 23,000 33%	23,000 <u>THRU</u> 23,000 33%	LEFT 23,000 33%
2020 2-WAY ADT	24,44 <u>RIGHT</u> <u>THR</u> 24,40024,44 33%33% 27,00	00 <u>U LEFT</u> 00 24,400 6 33%	<u>RIGHT</u> 24,400 33%	24,400 <u>THRU</u> 24,400 33% 27,000	<u>LEFT</u> 24,400 33%	<u>RIGHT</u> 24,400 33%	24,400 <u>THRU</u> 24,400 33% 27,000	<u>LEFT</u> 24,400 33%	<u>RIGHT</u> 24,400 33%	24,400 <u>THRU</u> 24,400 33% 27,000	<u>LEFT</u> 24,400 33%
	<u>RIGHT</u> <u>THR</u> 27,000 27,00 33% 339	<u>U LEFT</u> 00 27,000 6 33%	<u>RIGHT</u> 27,000 33%	<u>THRU</u> 27,000 33%	LEFT 27,000 33%	<u>RIGHT</u> 27,000 33%	<u>THRU</u> 27,000 33%	LEFT 27,000 33%	<u>RIGHT</u> 27,000 33%	<u>THRU</u> 27,000 33%	LEFT 27,000 33%
2040 2-WAY ADT	29,80 <u>RIGHT THR</u> 29,800 29,80 <u>33% 33</u> %	<u>U</u> <u>LEFT</u> 00 29,800	<u>RIGHT</u> 29,800 33%	29,800 <u>THRU</u> 29,800 <u>33%</u>	<u>LEFT</u> 29,800 33%	<u>RIGHT</u> 29,800 33%	29,800 <u>THRU</u> 29,800 <u>33%</u>	<u>LEFT</u> 29,800 33%	<u>RIGHT</u> 29,800 33%	29,800 <u>THRU</u> 29,800 <u>33%</u>	LEFT 29,800 33%

on Grov

JRNS5

TMTool

ORKP

Qui

• Output Screens

• Estimated Turning Movement Volumes

			NOF <u>RIGHT</u>	RTH LEG <u>THRU</u>	<u>LEFT</u>	E <u>RIGHT</u>	AST LEG <u>THRU</u>	<u>LEFT</u>	sc <u>RIGHT</u>	UTH LEG	<u>LEFT</u>	W <u>RIGHT</u>	EST LEG	<u>LEFT</u>
A.M.	DESIGN HR. TUP 2014	RNS EST. TURNS	20	600	20	20	600	20	20	600	20	20	600	20
	2020	EST. TURNS	42	597	42	42	597	42	42	597	42	42	597	42
	2030	EST. TURNS	52	646	52	52	646	52	52	646	52	52	646	52
	2040	EST. TURNS	68	695	68	68	695	68	68	695	68	68	695	68
Р.М.	DESIGN HR. TUP 2014	RNS EST. TURNS	30	800	30	30	800	30	30	800	30	30	800	30
	2020	EST. TURNS	59	794	59	59	790	59	59	790	59	59	790	59
	2030	EST. TURNS	73	864	73	73	864	73	73	864	73	73	864	73
	2040	EST. TURNS	94	927	94	94	927	94	94	927	94	94	927	94

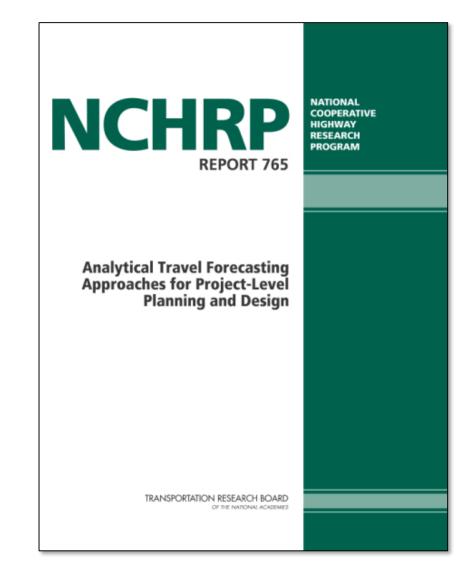
oduction

TMTool

• Output Screens

• Link Volume Check

LINK VOLUME CHECK	N	ORTH LE	G		EAST LEG	3	S		G	١	WEST LEC	3
DESIGN HOUR A.M.:	FROM	TO	LINK	FROM	TO	LINK	FROM	TO	LINK	FROM	<u>T0</u>	LINK
CONTROL LINK VOLUMES	640	640	1,280	640	640	1,280	640	640	1,280	640	640	1,280
2014 TURN SUMMARY	640	640	1,280	640	640	1,280	640	640	1,280	640	640	1,280
CONTROL LINK VOLUMES	679	681	1,360	679	681	1,360	679	681	1,360	679	681	1,360
2020 TURN SUMMARY	681	681	1,362	681	681	1,362	681	681	1,362	681	681	1,362
CONTROL LINK VOLUMES	751	749	1,500	751	749	1,500	751	749	1,500	751	749	1,500
2030 TURN SUMMARY	749	749	1,498	749	749	1,498	749	749	1,498	749	749	1,498
CONTROL LINK VOLUMES	829	831	1,660	829	831	1,660	829	831	1,660	829	831	1,660
2040 TURN SUMMARY	831	831	1,662	831	831	1,662	831	831	1,662	831	831	1,662
DESIGN HOUR P.M.:	FROM	то	LINK	FROM	то	LINK	FROM	то	LINK	FROM	то	LINK
CONTROL LINK VOLUMES	860	860	1,720	860	860	1,720	860	860	1,720	860	860	1,720
2014 TURN SUMMARY	860	860	1,720	860	860	1,720	860	860	1,720	860	860	1,720
CONTROL LINK VOLUMES	912	908	1,820	912	908	1,820	912	908	1,820	912	908	1,820
2020 TURN SUMMARY	911	908	1,819	908	908	1,816	908	911	1,819	908	908	1,816
CONTROL LINK VOLUMES	1,010	1,010	2,020	1,010	1,010	2,020	1,010	1,010	2,020	1,010	1,010	2,020
2030 TURN SUMMARY	1,010	1,010	2,020	1,010	1,010	2,020	1,010	1,010	2,020	1,010	1,010	2,020
CONTROL LINK VOLUMES	1,114	1,116	2,230	1,114	1,116	2,230	1,114	1,116	2,230	1,114	1,116	2,230
2040 TURN SUMMARY	1,116	1,116	2,232	1,116	1,116	2,232	1,116	1,116	2,232	1,116	1,116	2,232
Note: Boxed number indicates manual adjustment.												



duction

TMTool

NCHRP Report 765

- <u>NCHRP Report 765</u> provides alternative ways to develop turning movement forecasts from traffic volumes from a TDM
- 3 Categories of Procedures to Develop Turning Movements from TDM Output
 - Factoring Procedures
 - Iterative Procedures
 - Directional Volume Method
 - Non-Directional Volume Method
 - "T" Intersection Procedures

on

NCHRP Report 765

Qui

NCHRP Report 765

 Users are advised to consult Chapter 6 of the <u>NCHRP Report 765</u> for detailed discussions on the procedures

		Proce	edure	
Input Elements	Factoring (Ratio or Difference Method)	Iterative – Directional Volume Method	Iterative – Non-Directional Volume Method	"T" Intersection
Turning Movements Forecasting	 Base Year Count Base Year Assignment Future Year Assignment 	 Base Year Count or Estimated Turning Percentages 	 Estimated Turning Percentages 	 Future Year Directional (one turning movement known or estimated)
Link Volumes Forecasting		 Base Year Directional Volume Future Year Directional Assignment 	 Base Year Bi-Directional Assignment Future Year Bi-Directional Assignment 	 Base or Future Year Bi- Directional Base or Future Year Directional

Source: NCHRP Report 765, Analytical Travel Forecasting Approaches for Project Level Planning and Design, 2014

roduction

FDO

Mothed

TUR

NCHRP Report 765

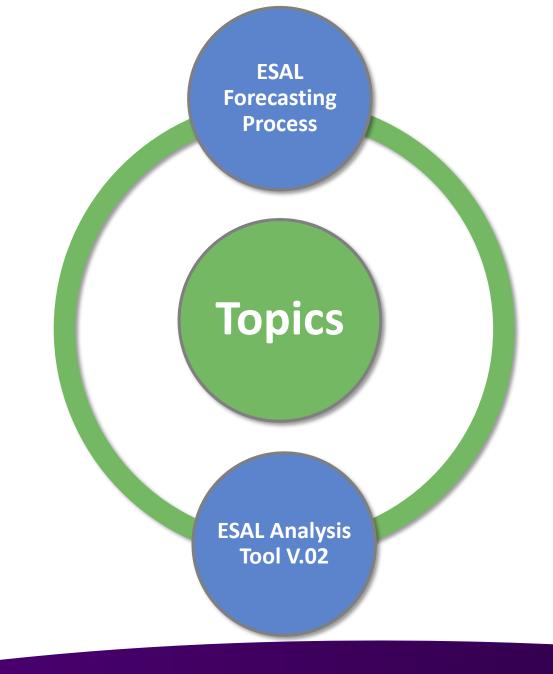
Qu

Estimating Intersection Turning Movements

QUIZ

Project Traffic FORECASTING HANDBOOK 2019

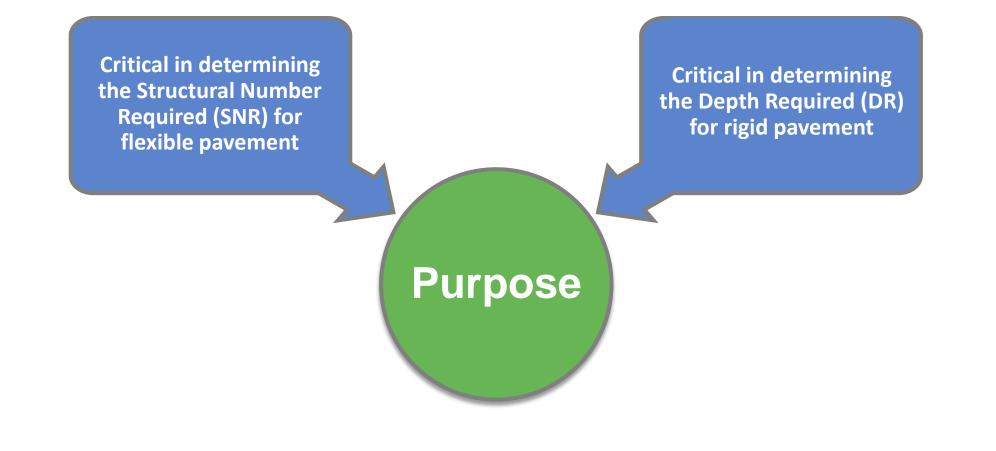
- Introduction
- Purpose
- ESAL Forecasting Process
- ESAL Analysis Tool V.02
- Quiz


ESAL Forecasting

Project Traffic FORECASTING HANDBOOK 2019

Introduction

- Equivalent Single Axle Loads (ESALs)
 - The number of axle loadings accumulated for the entire design life
- Necessary for pavement design
 - New Construction
 - Resurfacing, Reconstruction or Rehabilitation (RRR)

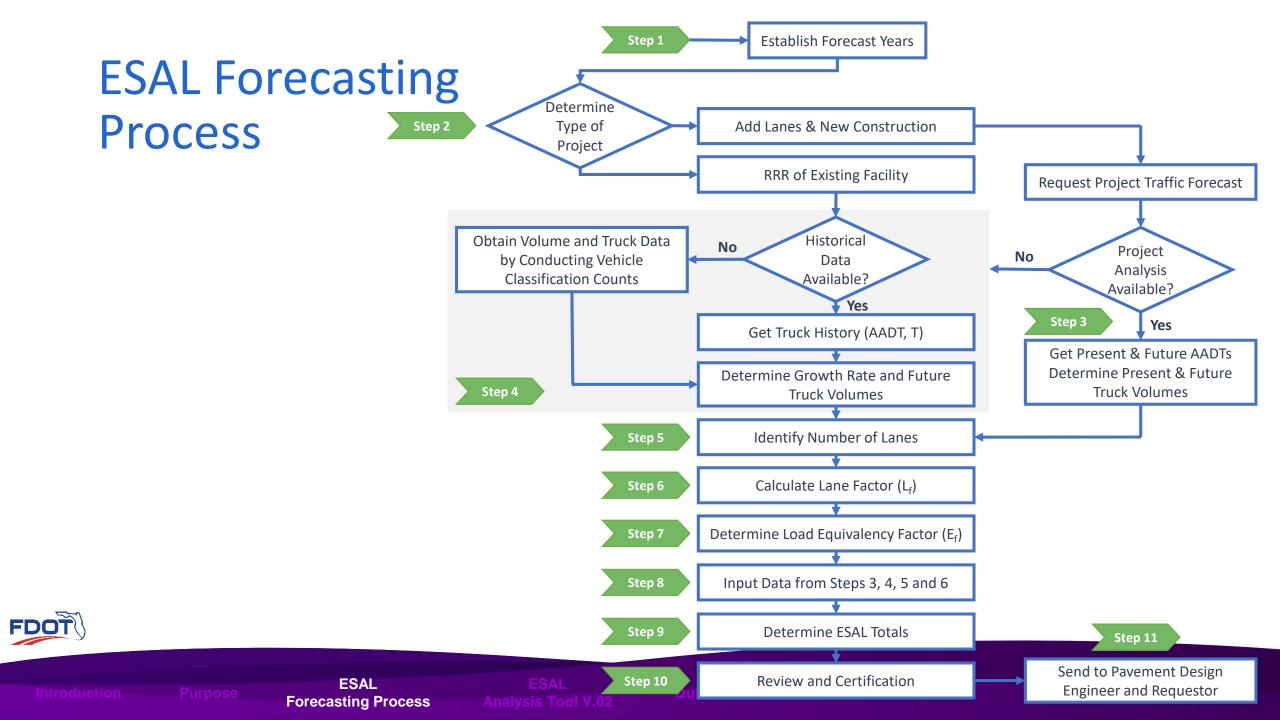


Introduction Purp

ESAL nalvsis Tool

Quiz

Purpose of ESAL Forecasting

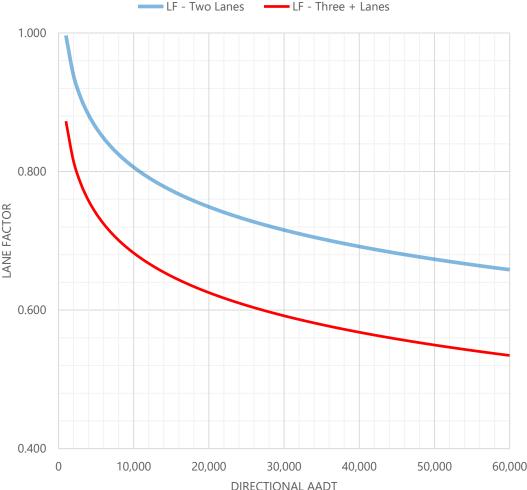


Purpose

orecasting Pro

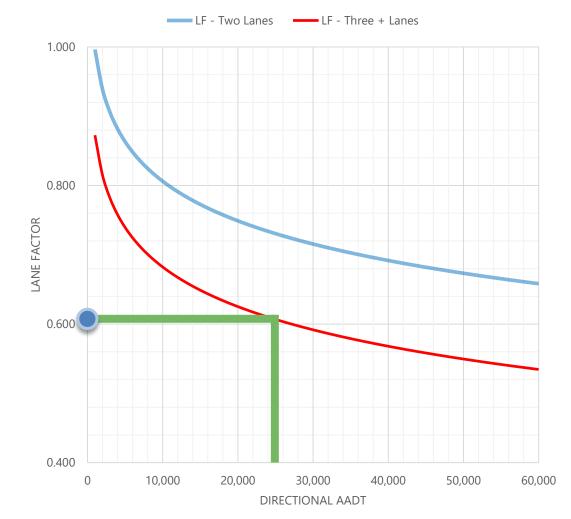
ESAL Analvsis Tool V Quiz

• ESAL_D Equation


$$ESAL_{D} = \sum_{i=1}^{n} AADT_{i} \times L_{F} \times T_{24} \times D_{F} \times E_{F} \times 365$$

- $ESAL_D = The number of accumulated 18 KIP ESALs$
- *i* = *The year for which the calculation is made*
- n = The number of years the design is expected to last
- $AADT_i = AADT$ for the year i
- $L_F = Lane Factor converts directional trucks to the design lane trucks$
- T_{24} = Percent heavy trucks during a 24 hour period
- $D_F = Directional Distribution Factor$
- $E_f = Equivalency Factor$ is the damage caused by one average heavy truck measured in 18 KIP ESALs

- Lane Factor (L_{F}) Equation
- $L_F = 1.567 0.0826 \times \ln(AADT) 0.12368 \times LV$
 - AADT = One Way AADT
 - 0 if two lanes in one direction 1 if three or more lanes in one direction • *LV* = 0 *if two lanes in one direction*
 - L_F can be considered as the proportion of directional traffic in the design lane
 - Always less than 1.0
 - Decreases as volume increases


- Lane Factor (L_F) Example
 - Assume
 - One-Way AADT = 25,000
 - One-Way Lanes = 3
 - Determine L_F
 - $L_F = 1.567 0.0826 \times \ln(AADT) 0.12368 \times LV$
 - AADT = 25,000
 - LV = 1
 - $L_F = 1.567 0.0826 \times \ln(25,000) 0.12368 \times 1$

ESAL

Forecasting Process

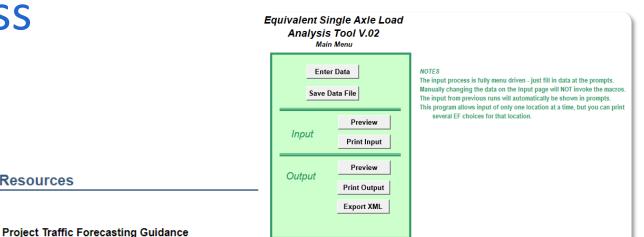
FDOT) • $L_F = 0.607$

Lane Factor for Different Types of Facilities

- E_F is determined using
 - FDOT Topic #625-010-006 Rigid Pavement Design Manual
 - FDOT Topic #625-010-002 Flexible Pavement Design Manual

Equivalency Factors for Different Type of Facilities

	Flexible Pavement	Rigid Pavement
Freeways		
Rural	1.05	1.60
Urban	0.90	1.27
Arterials and Collectors	5	
Rural	0.96	1.35
Urban	0.89	1.22



duction Purpos

ESAL

alvsis Tool

- ESAL Forecasting Process can be performed using
 - Equivalent Single Axle Load (ESAL) Analysis Tool V.02
- Automates the ESAL Process
 - L_f calculations built in
 - E_f hard coded

Resources

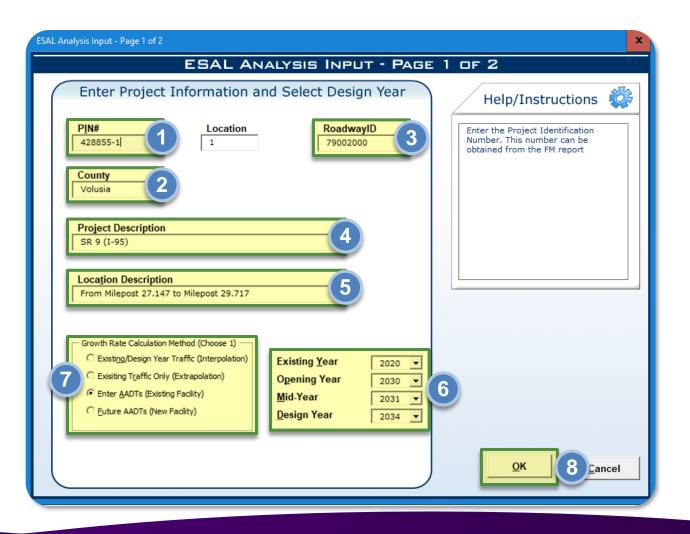
- Project Traffic Forecasting Handbook 2019
- Project Traffic Forecasting Procedure (525-030-120-h)
- TURNS5 Turning Movement Analysis Tool Documentation (2014)
- Florida Specific Traffic Data Inputs to the Mechanistic-Empirical Pavement Design Guide (MEPDG)

Project Traffic Forecasting Tools

- Turne5 Turning Movement Analysis Tool (2014
- Equivalent Single Axle Load Analysis Tool (Version 2)

Traffic Trends Analysis Tool

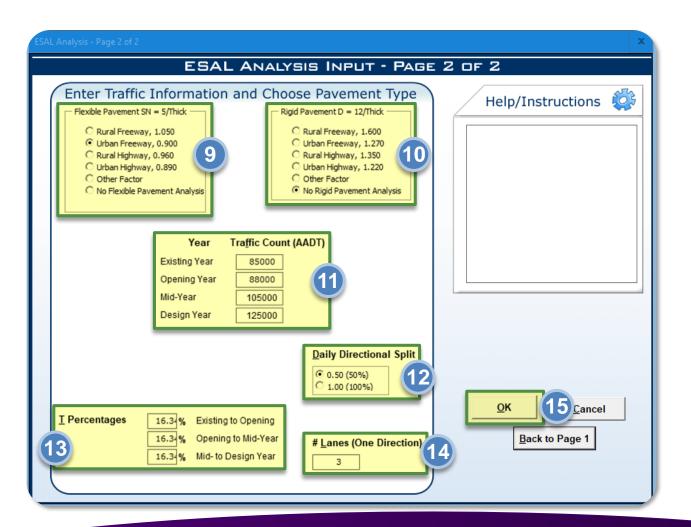
District 4's Turning Movement Tool (TM Tool)


Project Traffic Forecasting Training

Project Traffic Forecasting Training

	ESAL Analysis Input - Page 1 of 2
	ESAL ANALYSIS INPUT - PAGE 1 OF 2
 Open Excel Spreadsheet 	Enter Project Information and Select Design Year Help/Instructions
(ESAL_V02_XML.XLS)	PIN# Location RoadwayID 428855-1 1 79002000 Enter the Project Identification Number. This number can be obtained from the FM report
Equivalent Single Axle Load Analysis Tool V.02 Main Menu	County Volusia
Enter Data	Project Description SR 9 (I-95)
Save Data File Imatcany charging the data of the input page win for involve the mator. Preview The input from previous runs will automatically be shown in prompts. This program allows input of only one location at a time, but you can print several EF choices for that location.	Location Description From Milepost 27.147 to Milepost 29.717
Print Input Preview	Growth Rate Calculation Method (Choose 1) ○ Existing/Design Year Traffic (Interpolation) Existing Year 2020 ▼
Output Print Output Export XML	C Existing Traffic Only (Extrapolation) Opening Year 2030 ▼ © Enter AADTs (Existing Facility) Mid-Year 2031 ▼ C Euture AADTs (New Facility) Design Year 2034 ▼
	<u>O</u> K <u>C</u> ancel
FDOT	
ESAL ESAL ESAL ESAL ESAL Analysis Tool V.02	Quiz 9

- Fill Out Data Entry Screen
 - 1 Enter PIN Number
 - 2 Enter County
 - 3 Enter Roadway ID
 - 4 Enter "Project Description"
 - 5 Enter "Location Description"
 - 6 Enter "Current and Future Projection Years"
 - Select "Growth Rate Calculation Method"
 - 8 Click "OK" button



roduction Pu

ESAL Analysis Tool V.02

- Fill Out Data Entry Screen
 Select "Flexible Pavement" type
 Select "Rigid Pavement" type
 Enter "Traffic Count" data
 Select "Daily Directional Split"
 Enter "Truck Percentages"
 Enter "Number of Lanes (One
 - Direction)" 15 Click "OK" button

oduction Pur

ESAL Analysis Tool V.02

- Produce Output Report
- 10 Note the ESAL Accumulation for Pavement Design

SECTION		T TRAFFIC F 2020 to 204	OR PD&E and E 5 COUNTY:		LYSIS INFO/	FACTORS	8855-1
		VEMENT URE	AN FREEWAY				
	5/THICK	SR 9 (I-95)					
YEAR	AADT	E SAL (1000S)	ACCUM (1000s)	D	т	LF	EF
2020	85000	1285	0	0.5	16.34%	0.563	0.900
2021	85600	1293	0	0.5	16.34%	0.562	0.900
2022	86200	1300	0	0.5	16.34%	0.562	0.900
2023	86800	1308	0	0.5	16.34%	0.561	0.900
2024	87400	1316	0	0.5	16.34%	0.561	0.900
2025	88000	1323	1323	0.5	16.34%	0.560	0.900
2026	89700	1345	2668	0.5	16.34%	0.559	0.900
2027	91400	1367	4035	0.5	16.34%	0.557	0.900
2028	93100	1389	5424	0.5	16.34%	0.556	0.900
2029	94800	1410	6834	0.5	16.34%	0.554	0.900
2030	96500	1432	8266	0.5	16.34%	0.553	0.900
2031 2032	98200 99900	1453	9719 11193	0.5	16.34% 16.34%	0.551	0.900
2032	101600	14/4	11193	0.5	16.34%	0.550	0.900
2033	101600	1490	14206	0.5	16.34%	0.546	0.900
2034	105000	1517	15744	0.5	16.34%	0.547	0.900
2035	107000	1563	17307	0.5	16.34%	0.546	0.900
2037	109000	1587	18894	0.5	16.34%	0.542	0.900
2038	111000	1612	20506	0.5	16.34%	0.541	0.900
2039	113000	1637	22143	0.5	16.34%	0.540	0.900
2040	115000	1661	23804	0.5	16.34%	0.538	0.900
2041	117000	1686	25490	0.5	16.34%	0.537	0.900
2042	119000	1710	27200	0.5	16.34%	0.535	0.900
2043	121000	1734	28934	0.5	16.34%	0.534	0.900
2044	123000	1758	30692	0.5	16.34%	0.533	0.900
2045	125000	1782	32474	0.5	16.34%	0.531	0.900
		Оре	ening to Mid-Dea Opening to Dea				14421 31151
		-	or (ESAL's) to be use Traffic Forecasting P	ed tor povement d	esign on this proje	ct. Thereby attest to	othesenav
epared by:	a in accordance wit	ninerbol rigea	Traffic Porecasting P	roced are using h	storcal tallic data	rand oner arallable	monnauon.
	Name			Title		Org.Unit or F	Date
	Signature						
viewed By:	Name			Title		Org.Unit or F	Date

Purpose

ESAL Analysis Tool V.02

ESAL Forecasting

QUIZ

Project Traffic FORECASTING HANDBOOK 2019

- Tolled Managed Lanes Forecasting
- Project Traffic FORECASTING HANDBOOK 2019

- Introduction
- Travel Demand Forecasting for Express Lanes
- Express Lanes Project Traffic Methods
- ELToD Method
- Express Lanes Project Traffic Forecasting Methodology
- Quiz



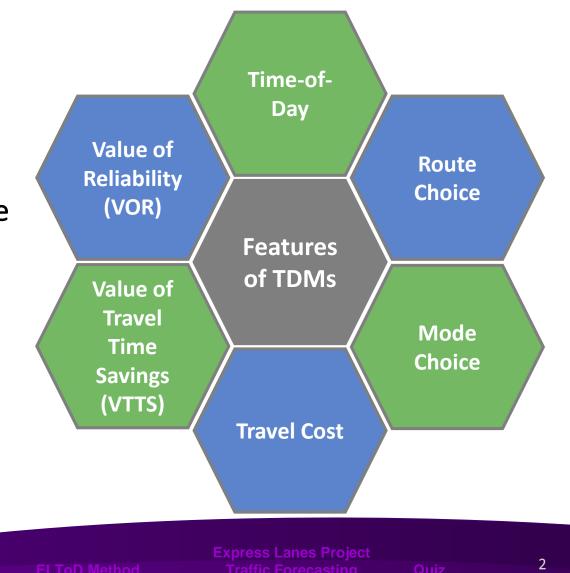
Introduction

- Managed Lanes
 - TSM&O solution where highway facilities or sets of lanes within a highway facility use management strategies to provide congestion relief

• Express Lanes

- Managed Lanes
- Pricing through Electronic Tolling
- This Training Covers Project Traffic Development for Express Lanes
 - Revenue Traffic Development will Not be Discussed

Introduction


Travel Demand Forecastir for Express Lanes Express Lanes Project Traffic Forecasting Method

LToD Method

Express Lanes Project Traffic Forecasting

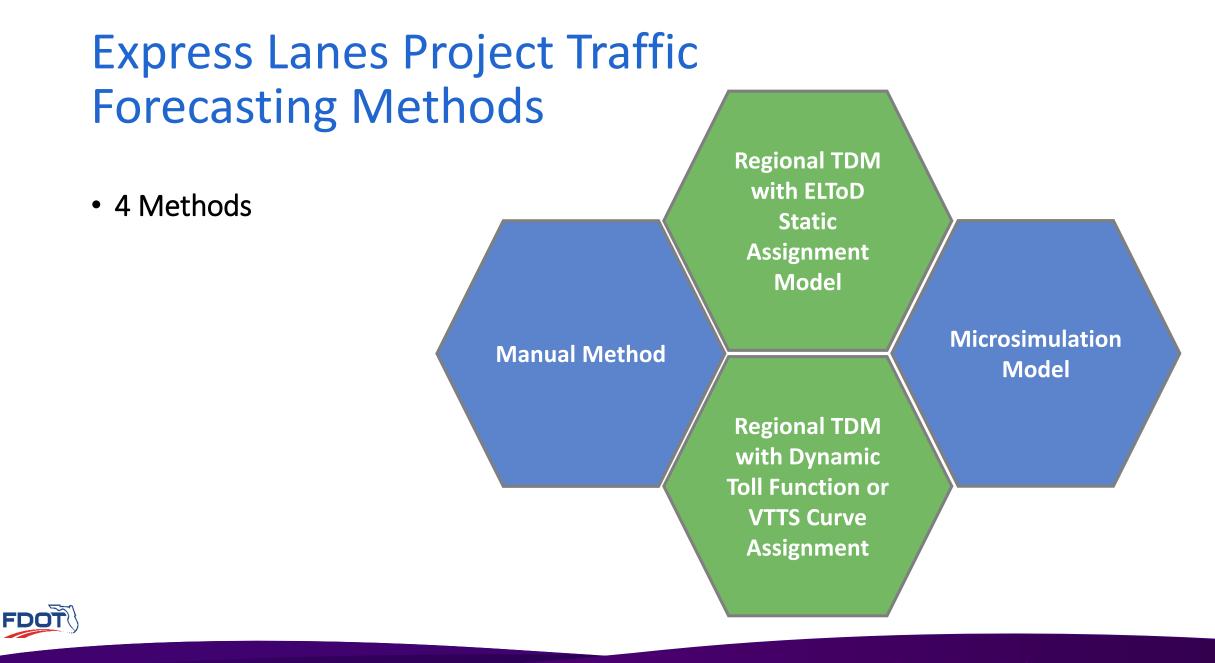
Travel Demand Forecasting for Express Lanes

- Desirable Features for **Travel Demand Models**
- Many advanced Florida TDMs already include some of these features
- Managed Lanes limit access points, which affects trip eligibility and potential demand for the facility

Travel Demand Forecasting for Express Lanes

Travel Demand Forecasting for Express Lanes

- Value of Travel Time Savings (VTTS)
 - VTTS is critical in determining Express Lane demand
 - Represents the monetary equivalent of travel-time savings by using the Express Lanes facility


Travel Demand Forecasting for Express Lanes

Express Lanes Project Traffic Forecasting Method

ToD Method

Express Lanes Project Traffic Forecasting

Qui

Travel Demand Forecasting for Express Lanes Express Lanes Project Traffic Forecasting Methods

LToD Method

Express Lanes Project Traffic Forecasting

• Manual Method

Pros

- ✓ Quick estimation
- Provides expected volume range for EL Ramps

- Supply/demand equilibrium not considered
- Aggregate effect of multiple O-Ds not considered

Travel Demand Forecasti for Express Lanes Express Lanes Project Traffic Forecasting Methods

ToD Method

xpress Lanes Project

Quiz

Cons

• Regional TDM with Dynamic Toll Function or VTTS Curve Assignment

Pros

- Estimates Daily or period demand directly from TDM without needing to use another model
- Provides a systemwide EL evaluation

• Typically uses generalized cost or predefined share

- Dynamic toll calculation typically at period level and not at 15-min or hourly levels
- S Toll amount not reported or used
- VOR not considered
- Song model run times for alternative testing
- Post processing needed

Travel Demand Forecast for Express Lanes Express Lanes Project Traffic Forecasting Methods

_ToD Method

xpress Lanes Project

Quiz

Cons

___(

• Microsimulation Model

Pros

- Pricing model customized to match the Statewide Express Lanes Software tolling algorithm
- Accounts for complex weaving and geometry
- ✓ Accounts for queue build-up, spillback and dissipation
- ✓ Can be integrated with other multiresolution tools

- Extensive time and effort for model development and validation
- Observe the second s
- EL choice selection at first entry only

Travel Demand Forecasting for Express Lanes

Express Lanes Project Traffic Forecasting Methods

LToD Method

Express Lanes Project Traffic Forecasting

Quiz

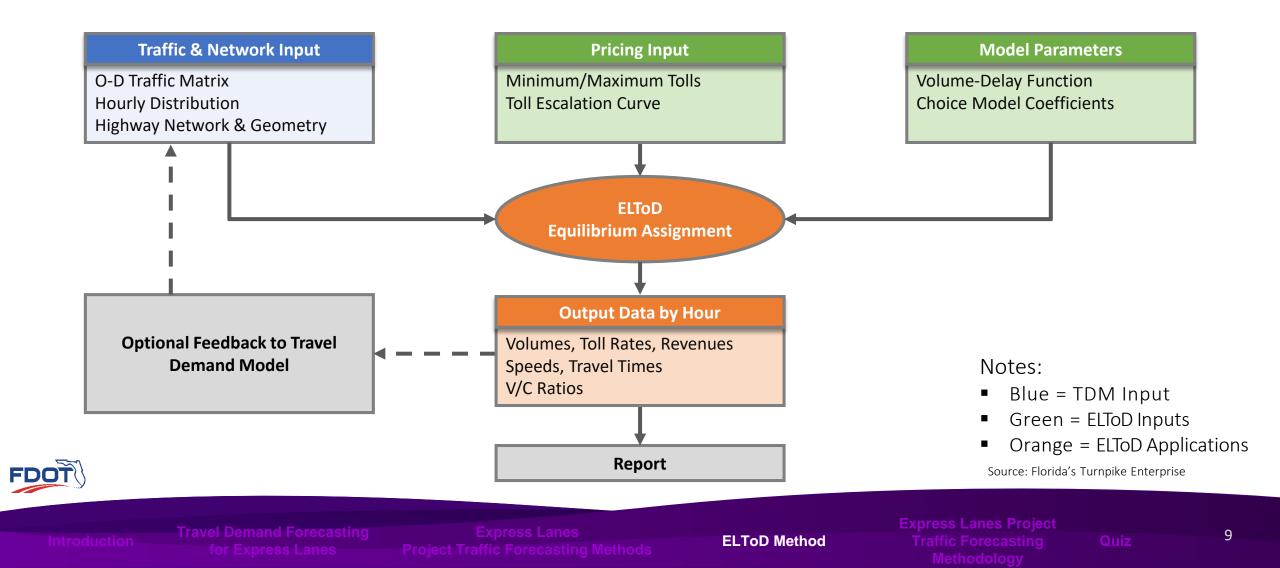
Cons

• Regional TDM with ELToD Static Assignment Model

Pros

- Proven to be efficient
- Quick turnaround time for alternatives testing
- Consistent results in controlled environment
- ✓ Incorporates value of reliability
- ✓ Calculates tolls, congested speeds, and volumes by hour

- Cons
- Obes not account for queue spillback
- Section at first entry only


Travel Demand Forecasting for Express Lanes Express Lanes Project Traffic Forecasting Methods

ToD Method

xpress Lanes Project

Quiz

ELToD Method

• General Guidance on Tools and Methodologies Recommended for Each Project Phase

FDOT

Travel Demand Forecastin for Express Lanes Express Lanes
Project Traffic Forecasting Metho

LToD Method

Express Lanes Project Traffic Forecasting Methodology

uiz

Tolled and Managed Lanes Forecasting

QUIZ

Project Traffic FORECASTING HANDBOOK 2019

Thank You!

Jenna Bowman, PE

FDOT Systems Implementation Office

Systems Management Administrator

Jenna.bowman@dot.state.fl.us

Amy Causseaux

FDOT Systems Implementation Office

State Interchange Review Coordinator

<u>Amy.causseaux@dot.state.fl.us</u>

Project Traffic FORECASTING HANDBOOK 2019